

FABRIC 6.4 IIDFINDER RELEASE NOTES

© 2021 K2VIEW. All Rights Reserved. Page 1 of 8

Fabric 6.4 iidFinder Release Notes

PARTITIONED DELTA MECHANISM
The Partitioned mechanism has been added in Fabric 6.4 to enhance Delta handling performance

in the iidFinder. The following methodologies have adopted to support this:

• Storage: Delta content is written to memory, where possible, or to the file system and not

into Cassandra.

• Partitioning: the core process outcome’s data is handled by multiple jobs where each job

owns a range of IIDs.

• An IID is always handled by the same job as long as the job is alive.

• Sync process: each job is also responsible for multiple worker threads that handle the sync

process and that run on same node as the job where the data is stored.

• Priority is managed by a dedicated Kafka topic and thus it is faster.

Note that this new mechanism is optional and must be explicitly configured, both Cassandra and

Kafka options are also supported.

The following diagrams illustrate how data is handled by the new mechanism.

FABRIC 6.4 IIDFINDER RELEASE NOTES

© 2021 K2VIEW. All Rights Reserved. Page 2 of 8

Click here to download the diagram.

• Each instance’s data is usually contained in a single JSON file.

• Each job activates several sync workers managed by sqlite ordered.db.

⧫ Each entry in the sqlite contains the iid, partition, offset, update date and status.

⧫ The status of an sqlite entry can be:

▪ Updating, while updates arrive.

▪ Syncing, when a worker starts a sync. New updates that arrive during a sync are

written into a new entry.

⧫ When the sync ends the entry is deleted.

• After five failed sync attempts, the entry is written to Cassandra and signed as handled by

Kafka. This enables to continue managing messages even when a job crashed and avoid

redundant sync actions to be executed again.

• Partitioned jobs are displayed in k2jobs.

https://www.websequencediagrams.com/files/render?link=EEFG2ZWcIRbEN3sjOTIYTDBaPcwwqKuWs63OCc99n4vJXth6lNCYeppkRwT3fwZm

FABRIC 6.4 IIDFINDER RELEASE NOTES

© 2021 K2VIEW. All Rights Reserved. Page 3 of 8

Configuration Changes

iifConfig.ini

• DELTA_STORAGE – decide which mechanism to use, either of: CASSANDRA_ONLY (default)

/ Kafka / Partitioned (new)

config.ini
A new section named partitioned_delta has been added. The following are its main parameters:

Variable Description Default value Notes

DELTA_MAIN_STORAGE Path to primary
storage.

/dev/shm/delta Default primary
storage is in memory.

MAIN_STORAGE_MAX_
SIZE_KB

Maximum size of main
storage.

2973348 (~ 2.9G)

DELTA_SECONDARY_ST
ORAGE

Path to secondary path,
used when primary
storage exceeds
capacity.

${FABRIC_HOME}/s
torage/delta

Optional, can be
empty.

SECONDARY_STORAGE
_MAX_SIZE_KB

Maximum size of
secondary storage.

2973348 (~ 2.9G)

BOOTSTRAP_SERVERS Kafka server endpoint. localhost:9093 Probably requires
updating. Can be
applied on the same
Kafka used for other
components or the
iidFinder. Other Kafka
parameters are
hidden.

SSL_ENABLED Indicates whether Kafka
interactions use SSL.

False Probably set to True.
Other Kafka security
parameters are
hidden.

NUM_OF_DELTA_JOBS Number of partitioned
Delta jobs in the
cluster.

100

NUM_OF_PARTITIONS Number of partitions. 100

PARTITIONED_DELTA_J
OB_AFFINITY

Affinity to the
Partitioned Delta Job.

No affinity

FABRIC 6.4 IIDFINDER RELEASE NOTES

© 2021 K2VIEW. All Rights Reserved. Page 4 of 8

FABRIC 6.4 IIDFINDER RELEASE NOTES

© 2021 K2VIEW. All Rights Reserved. Page 5 of 8

Other parameters in the config file may require the following changes:

• SYNC_JOB_BULK_SIZE, default = 500, defines the sync job’s bulk reading size of iids.

• SYNC_WORKERS_COUNT, default = 10, defines the number of sync threads to execute in

parallel.

• SYNC_WORKERS_POOL_MAX_SIZE, default = 100, defines the maximum number of

threads that can be executed on a node to run a sync.

The following two priority-related configuration parameters are currently not exposed and can be

exposed if needed:

• PRIORITY_NUM_OF_PARTITIONS

• PRIORITY_NUM_OF_DELTA_JOBS

The priority is managed by a different topic and dedicated job and therefore has its own

definitions that are represented by these parameters.

Setup Considerations
The following should be considered during setup:

• Kafka retention, when using the Partitioned Delta mechanism, the data is not persistent in

the DB. This means that if the system crashes, the data might get abandoned. To prevent

this, the Kafka log.retention.hours retention period shall be extended to ensure that the

data is handled.

• Storage, the Partitioned Delta mechanism is mostly effective when data is managed in

memory (aka /dev/shm). Once it exceeds its limit, the data is stored in the file system and

becomes less effective. Therefore, consider the available memory that shall be allocated

for the mechanism. It should be planned holistically (os/apps/lu cache/delta cache+db)

Implementation Recommendations

getDeltas Function
When the Partitioned Delta mechanism is used, the implementer shall use the new

getDeltasStream() function exposed in the User Code API, instead of using the

IidFinderApi.getDeltas() iidFinder API.

While the original function still works, using the new function enables faster handling of the

higher priority delta data.

FABRIC 6.4 IIDFINDER RELEASE NOTES

© 2021 K2VIEW. All Rights Reserved. Page 6 of 8

System Behavior Changes
The following changes occur when using the Partitioned Delta mechanism:

Sync failure handling
When a sync is executed by the Partitioned Delta jobs workers, it attempts five retries during an

error. If the sync fails, an error is written to the new k_<LU 3 first letters>_partitioned_delta_fail

table in Cassandra and the delta datais written to Cassandra delta table which is used for other

delta handling methods.

LUI retrieval (get):

• Running a manual get/sync via the console may take longer, since the delta data could be

on a different node which requires the current node to make a remote get call to the

node.

• To avoid a remote get during migration in the initial load phase, the new sync_local_only

SET command shall be used: set it to true to avoid remote get and set to false after the

initial load ends. Using the SET command enables running the Fabric server with

DELTA_STORAGE already configured to PARTITIONED during the initial load to prevent

Fabric from restarting in between.

• Web Services response time is not affected when using get/sync calls, since a request

filter routes the request to the node handling the requested instance.

•

Local_only
Sync
Value

Get
Mode

With
Delta
Changes

Expected Result

TRUE Sync On Local TRUE
local sync is done tables are synced
and delta changes they are synced

FALSE Sync Off Local TRUE
local sync is done no sync is
performed

FALSE
Sync

force Local TRUE

local sync is done sync from source
implementation ignore delta changes
(should be empty delta after sync)

The implementation does not ignore
the deltas as it needs to rerun those
at the end sometimes as part of the
queue (based on a global)

FALSE Sync On Remote TRUE

remote sync is done tables are
synced and delta changes they are
synced

FABRIC 6.4 IIDFINDER RELEASE NOTES

© 2021 K2VIEW. All Rights Reserved. Page 7 of 8

FALSE Sync Off Remote TRUE

sync is done on local and no sync is

done (skipped)

FALSE
Sync

force Remote TRUE

remote sync is done sync from
source implementation ignore delta
changes (should be empty delta
after sync)

Same as above

TRUE Sync On Remote TRUE

local sync is performed only tables
with sync policy will be synced as
expected

TRUE Sync Off Remote TRUE

sync is done on local and no sync is

done (skipped)

TRUE
Sync

force Remote TRUE

local sync is performed from
source implementation ignore delta
changes (should be empty delta
after sync)

The LUI will not get the delta records
yet and therefore we should not
delete the delta records

FALSE Sync On Local FALSE
local sync is done tables with sync
policy are synced as expected

FALSE Sync Off Local FALSE
local sync is done no sync is
performed

FALSE
Sync

force Local FALSE

local sync is done sync from source,

unless a decision function will return

false

FALSE Sync On Remote FALSE

remote sync start and get is back to
local sync on tables with sync policy
are synced as expected

FALSE Sync Off Remote FALSE

sync is done on local and no sync is

done (skipped)

FALSE
Sync

force Remote FALSE

remote sync start and get is back to
local and run local instance is
synced from source

TRUE Sync On Remote FALSE

local sync is performed only tables
with sync policy will be synced as
expected

TRUE Sync Off Remote FALSE

sync is done on local and no sync is

done (skipped)

FABRIC 6.4 IIDFINDER RELEASE NOTES

© 2021 K2VIEW. All Rights Reserved. Page 8 of 8

TRUE
Sync

force Remote FALSE

local sync is performed from source,
unless a decision function will return
false

Known Issues
• The number of jobs and partitions are the same for all LUs.

• To enhance performance, JSON files are currently not encrypted.

• In case a job is crashed and reinitiated on another node, the JSON files are recreated on

the that node but not deleted from the original node.

GLOBALS AS A SOURCE SCHEMA
Fabric now supports Globals as a source schema’s value in an LU population property under the

iidFinder section. The Globals name must be written between @ characters. For example:

@BILLING_SCHEMA@.

INSTALLATION AND UPGRADE NOTES
Run the upgrade scripts and procedures of all released versions simce your current deployed

release version up to 6.4.0.

Partitioned Delta Mechanism
To use the Delta mechanism, update the iidFinder as follows:

1. Stop new messages arriving via Golden Gate and wait for old messages to be handled.

2. If initial migrate shall be executed, a first deploy shall be done to load the XMLs and then

run the migrate.

3. Update the configurations to use Partitioned mechanism.

4. Restart Fabric and then make a second deploy to activate the Jobs.

5. Reactivate Golden Gate Messages.

Globals as a Source Schema
To make it effective for iidFinder, on each update of the global value the following shall be done:

1. Drop k2staging, if exists.

2. Run the init tables script.

3. Restart the iidFinder.

Note that instances can only be migrated (migrate, get) once the above steps have been

implemented. If an instance is migrated beforehand, drop and redeploy the LU.

