
Alpinist

Course 13
Broadway: Beyond Actors

Agenda
W E L C O M E

• Supported Data Types in Broadway

• Link Actors

• Error handling

• Reset Actor State

• Build a Custom Actor
• Schema Property

• Editor Property

• Parallel Stage Execution

• Broadway metrics

• Recovery Point

• Deploy.flow

Supported Data Types in Broadway

• Actors pass Java objects between stages. Broadway supports a focused
set of types and will auto-convert between them when an Actor expects a
different (compatible) type.

• Supported types are:

• Described by the patameter’s Schema property

• Visualized in the Data Inspector

Supported Data Types in Broadway

Core supported types

• Primitives: String, Long, Real, Boolean, Date, byte[]

• Other numerics: int/Integer, short/Short, byte/Byte, float/Float auto-
convert to Long/Double

• Binary: JDBC Blob → auto-converted to byte[]

• Collections (Iterables): supported through Java arrays or maps

Supported Data Types in Broadway

Implicit conversion

Broadway converts inputs to the type an Actor declares. “Reasonable” conversions
are automatic; otherwise an exception is thrown.

Handy rules

• Numbers Strings: Long/Double ⇄ String (parse/format)

• Booleans Numbers: true 1, false 0

• Booleans Strings: "true"/"false"; empty/"0"/"false" → false

• Numbers Date: numbers are milliseconds since 1970-01-01 00:00:00 UTC

• Value → Iterable: becomes a single-item iterable (7 → [7])

• Strings byte[]: via UTF-8; other types format to String first, then to UTF-8 bytes

Practical examples

• Read "0" into a Boolean input → false

• Pass 7 to an Iterable input → becomes [7]

• Convert byte[] to String → UTF-8 assumed

• Try null into a Date → not supported

Supported Data Types in Broadway

Null behavior

null is supported and implicitly convertible to every type with safe
defaults:
String="", Long=0, Double=0.0, Boolean=false, Date=1970-01-01
00:00:00, byte[]=empty, Iterable=empty, Map=empty

Date formats

• String output (format): yyyy-MM-dd HH:mm:ss.SSS (UTC)

• String input (parsing):
• yyyy-MM-ddTHH:mm[:ss[.SSS[Z]]]

• yyyy-MM-dd HH:mm[:ss[.SSS[Z]]]

• Delimiter T or space; seconds, millis, and timezone are optional

Broadway supports date/time manipulation Actors for more explicit
date/time conversions and calculations.

Linking Actors

Link type

• Value (default) - Pass the value as-is.

• Iterate - Opens a loop over the linked value (Iterable/array).
The link appears as a double-dashed line.
Auto-behavior: if you connect an array of T to an input of type T (e.g., string[] → string), Broadway will
automatically set the link to Iterate.

• First
Pass only the first item (e.g., the first record of a result set).

Varargs (variable arguments)

When ON, the target input becomes an array, and each
additional source link appends another element to that array.

Useful for building arrays on the fly (e.g., feeding the Concat
Actor with many strings).

Broadway handles exceptions at the Stage level, similar to a Java try–catch. If
any Actor in a Stage throws an exception, the Stage’s error handler runs and
decides the path forward:

• return true → suppress the error and continue the flow

• return false → do not suppress; stop the flow

What can act as an error handler?

• Any Actor that return true or false. Including:

• JavaScript Actor with custom logic in its input parameters

• An InnerFlow Actor

• Two built-in handlers designed for this purpose:
• ErrorHandler

• ErrorFields

For reuse across multiple flows or Stages, prefer implementing error handling
as an Inner Flow and referencing it where needed.

Error Handling

ErrorHandler Actor

Catches exceptions raised by any Actor in its Stage and provides Per-exception handling rules.

• Exception classification:

• SQL (split into Unique constraint vs. Other).
Unique constraint detection is supported for Oracle, DB2, SQLite
and SQL Server.

• HTTP - option to provide a specific status code

• General Exception - option to provide a specific error message regex

• Suppression control

• Suppress checkbox toggles whether to swallow the error.

• If an Inner Flow is configured for that error, it can override the
checkbox by returning:

• true → suppress and continue

• false → do not suppress; stop

Error Handling

ErrorHandler Actor

• Built-in Retry

• Configure Retries and Interval (ms) in the ErrorHandler editor
(defaults: Retries=0, Interval=500ms).

• If an Inner Flow is used as the handler, it may override behavior by
returning result = true / false / retry
* “result” external name must be used.

• Logging:

• Optional “Log” checkbox writes the error to logs

• If retries are enabled, the current retry attempt is also logged
(e.g., “Stage <name> – retrying <Actor>: attempt <n>”)

Error Handling

ErrorFields Actor

Always returns true (i.e., it suppresses the error), so the flow continues.
It exposes structured context you can use to make routing decisions:

• Error message

• Error code
• Origin: flow, stage, and actor names

• Actor inputs that triggered the exception

• Additional info: exception class, SQL statement (when relevant),
and stack trace (if requested)

• Number of retry attempts

Usage patterns

• As the Stage’s error handler (directly)

• Inside an Inner Flow that serves as the Stage’s error handler
• The Inner Flow receives the error as input, runs ErrorFields to

unpack it, and then applies custom logic to decide next steps.

• The error input parameter of the ErrorFields must be set as External.

Error Handling

Retry Mechanism

When a Stage throws an error, BW can automatically retry the failing Actor.

Ways to drive retries:

• ErrorHandler settings
Set Retries and Interval in the ErrorHandler.
If using an Inner Flow as the handler, it can return result = retry to continue attempts
Note: The output parameter must have “result” external name

• Any actor defined as an error handler in a flow ('red actor’).
Have the handler return retry (instead of true/false) to trigger
another attempt.

If the error handler implemented using an Inner Flow, you can read
the current attempt count via ErrorFields.attempt and branch
logic accordingly.

Error Handling

Broadway allows resetting an Actor’s state during flow execution. This is particularly useful when handling
nested loops.
For example, when using a StringBuild Actor to aggregate values inside an inner loop, the aggregation must
be cleared at the start of each iteration of that loop.

How to Reset Actor State

• Context Menu Reset (per iteration)

• Right-click the Actor → Reset on iteration 0.

• This option is available only when the Actor is placed inside an internal iteration (level ≥ 2).

• Once enabled, a reset icon appears on the Actor badge.

• At runtime, the Actor’s state is reset at the beginning of iteration 0, just before execution.

• Applies only to Actors that maintain internal state.

• ResetActors Actor

• Use the ResetActors Actor to programmatically reset multiple Actors by ID (Actor names).

• The specified Actors have their state cleared before continuing execution.

Reset Actor State

Transactions in K2View Broadway

Broadway Transactions Handling

• Transactions ensure consistency and isolation
of data changes.

• Transaction starts when a transaction-marked
Actor initiates a connection.

• Sequential transaction-marked Stages share
the same transaction.

• Transaction ends at the last transaction Stage
or flow completion.

• Followed by commit or rollback based on flow
outcome: if error accurs in the transaction
stages – rollback will be initiated. Otherwise –
commit.

Transaction Scope: Inner Flows & Iterations

• Transactions in Inner Flow
• Inner flows inherit the transaction of the

calling (outer) flow.

• They use the same shared resources but do
not close the transaction.

• The transaction is always closed by the outer
flow.

• Transactions in Iterations
• If all Stages in an iteration are transactional, a

single transaction continues and commits
after the full iteration.

• If non-transactional Stages exist, each
iteration starts and commits a separate
transaction.

Transaction Scope: Various Iteration Examples

Committing transactions in large data sets

• For a large data sets, you can commit every X records
using a Stage Condition

• Example: to commit every five records using
JavaScript actor as a Stage Condition:

var i = input1;

(i + 1) % 5 == 0;

• The Check Stage executes only every 5th records.

• Since it’s non-transactional, a commit occurs, and a new

transaction starts for the next batch.

Transactions in a Loop with Mixed Stages

• When a loop contains both transactional and non-
transactional Stages, the transaction scope resets based on
Stage configuration.

• A transaction starts at the first transactional Stage and
commits when a non-transactional Stage is reached.

• A new transaction begins with the next transactional Stage.

• This cycle continues through the loop, committing and
restarting transactions as defined by the Stage types.

• The final transaction is committed at the end of the loop if
not already committed earlier.

Error Handling for Transactions

• When an Error Handler is attached to a transactional Stage, it controls flow continuation

• If it returns false (do not suppress), the transaction is rolled back and the flow stops with
an error message

• If it returns true (suppress), the flow continues, the transaction remains active and
commits when a non-transactional Stage is reached.

NoTx Actor

• The NoTx Actor marks an interface as non-transactional within an active transaction
context.

• It prevents the execution of begin, commit, and rollback commands on that interface.

• It must be placed before any transactional operation is performed on the interface.

• An exception will be thrown if used outside of a transaction or if the interface is already
participating in a transaction.

Use Case: Writing to a Logging Table in a Separate Database

• Your primary transaction runs on Database A, but you log activity to Database B.

• To avoid cross-DB transaction issues or distributed transaction overhead, mark Database B as
NoTx.

• This ensures logs are saved even if the main transaction on Database A is rolled back.

Transaction Best Practice

Broadway includes a built-in transaction management mechanism. For iterative processing,
transactions can be committed in three ways:

• Per Iteration – commit after each loop.

• End of Iteration – commit once after all data is processed.

• Batch Commit – commit every X records.

The choice depends on data volume, performance, and business requirements. For
example:

• Large data sets (e.g., 1M records) → use batch commit for efficiency.

• Full rollback required on failure → use end of iteration commit.

Stage Actors Parallel Execution

A Stage can run multiple Actors (or Inner Flows) in parallel to increase
throughput.

Configure parallelism

• Open the Stage menu (icon at the stage’s top-right).

• Select Parallel and enter the number of threads.

• After saving, a Parallel icon with the thread count appears above the Stage
name.

Disable parallelism

• Open Stage menu → Parallel, set the thread count to 0.

Build a Custom Actor

Broadway provides two options for creating a custom
Actor:

• Create a new Actor

• Based on Java code, or

• Based on a BW Flow

• Inherit from an existing Actor

Create a New Actor
New Actor Based on Java code

1. Create the Java code
• In the project, create a new Java file (src → right click → New Java File).

• Extend the Actor class.

• Implement the action method. This method is executed when the Actor runs.

• Use the input and output maps to handle parameters:
• Retrieve input: input.string("inputName")

• Set output: output.put("outputName", value)

 Example:
 public class MathSubtract implements com.k2view.broadway.model.Actor {
 public void action(Data input, Data output) throws Exception {
 Integer a = Integer.parseInt(input.string("a"));
 Integer b = Integer.parseInt(input.string("b"));
 output.put("result", Math.subtractExact(a, b));
 }
 }

2. Create the new Actor in Broadway, to execute the Java code

Broadway → Right click → New Actor.
• Provide the Actor name

• Set Tag (category in the palette).

• Set Badge (icon next to Actor name).

• Set the java path to your Java Class (Java class path).

3. Define input/output parameters with types and editors.

Create a New Actor
New Actor Based on Broadway Flow

Each BW Flow can be wrapped as a single Actor:

• From the flow menu, select Save as Actor….

• Provide the Actor’s name and tag, then click Submit.

• Inputs and outputs of the flow are automatically added to the Actor.

Inherit an Actor
1. Create the Java code

• In the project, create a new Java file (src → right click → New Java File).

• Extend the inherited Actor class.

• Override the action method. This method is executed when the Actor runs.

• Use input and output maps to handle parameters:
• Retrieve input: input.string("inputName")

• Set output: output.put("outputName", value)

Example - Extending Logger:

public class MyLogger extends Logger {

 @Override

 public void action(Data input, Data output) {

 String message = input.string("projectName") + ": " + input.string("message");

 input.put("message", message);

 super.action(input, output);

 }

}

Inherit an Actor
2. Create the new Actor and select the Actor it extends

Two options:

• Via New Actor

• Broadway → Right click → New Actor.

• Provide a name.

• In the Actor’s properties, set the Parent Actor from which current Actor will
inherit

• Via Export

• Open the Actor’s menu → Export Actor.

• Provide a new Actor name (do not check the Override option)

The Actor will automatically inherit the Actor’s input and output
parameters.

3. In the Actor’s properties, set the java path to your Java Class (Java
class path

Override a Custom Actor
To override a custom actor:

• Use Export Actor on the source Actor and select Override current

• After overriding, adjust parameters (defaults, mandatory, modifiers,
editor/schema) or add parameters as needed

Actor Parameters
When defining a new Actor, each parameter should be configured with
the following properties:

• Default Value – the initial value assigned to the parameter.

• Schema – defines the input type (e.g., Boolean, String, Integer).

• Editor – specifies the editor presented to the user when setting the
parameter value.

• Description – provides an explanation of the parameter’s purpose and
how it affects the Actor’s logic.

• Advanced Options:

• Mandatory – whether the parameter must be set.

• Modifier:

• Final – default value cannot be changed.

• Hidden – parameter is not visible to the user.

Schema Property
The Schema property determines the parameter’s type.

Example basic structure:

{

 "type": "string"

}

Supported types:

• string

• integer

• decimal

• number

• date

• boolean

• array

• object

Editor Property
The Editor property defines the editor shown to the user when assigning a parameter
value.

Default editor:

{

 "id": "com.k2view.default"

}

 Common Editor Configurations:

• Select from Logical Units (with optional empty
entry)

 {

 "id": "com.k2view.logicalUnit",

 "addEmptyEntry": true

 }

• Select from Interfaces (filtered by type)

 {
 "id": "com.k2view.interface",

 "interfaceType": ["database"]

 }

• Select from available Broadway
flows

 {

 "id": "com.k2view.innerflow"

 }

• Drop-down list of values

 {

 "id": "com.k2view.dropdown",

 "options": ["1", "2"]

 }

Editor Property
All available editors are located in:

/opt/apps/fabric/workspace/fabric/staticWeb/editors

Supported Editors:

1. com.k2view.code

2. com.k2view.distribution

3. com.k2view.graphitFiles

4. com.k2view.llmPrompt

5. com.k2view.multipleSelection

6. com.k2view.table

7. com.k2view.dataviewer

8. com.k2view.dropdown

9. com.k2view.innerFlow

10. com.k2view.logicalUnit

11. com.k2view.regex

12. com.k2view.textarea

13. com.k2view.dbtable

14. com.k2view.errorHandler

15. com.k2view.integer

16. com.k2view.mTable

17. com.k2view.schedule

18. com.k2view.timezone

19. com.k2view.default

20. com.k2view.functions

21. com.k2view.interface

22. com.k2view.mTableKey

23. com.k2view.strings

Broadway metrics

Broadway Profiler

The Broadway Profiler can be enabled during flow execution to provide a detailed breakdown of results by
Flow, Stage, Actor, and Iteration. It can be activated from Fabric Studio or via the broadway command.

Enabling the Profiler in Studio:

• In the Main menu toolbar of the BW flow, select Actions > Profiler and run the flow.

• After execution, the Run Results window displays a line: “Profiler Results: Click on the Viewer icon.”

• Click the Viewer icon (image) to open and review the Profiler results.

Broadway Profiler

Running the Profiler via Broadway Command

• To enable the Profiler when executing a flow with the broadway command, set the profilerTelemetry
argument to true.

• This adds the Profiler output to the command’s results.

Broadway metrics

Trace Command

Get the metrics of a single BW flow by invoking the trace command of your session, before executing the
BW flow.

Syntax:
trace [session_scope/global_scope] <TRACE_NAME> '[TRACE_PARAM=[TRACE_VALUES]];...';

Broadway metrics

Broadway metrics
JMX Stats

JMX Stats provide runtime performance metrics for Broadway
flows, broken down by Flow, Stage, Actor, and Iteration.

This allows monitoring and analysis of flow behavior across multiple
executions, complementing the single-run insights from the Profiler.

Recovery point
Recovery Points provide a mechanism to resume execution from a defined stage instead of restarting the
entire flow.

• When a Recovery Point is set, Broadway serializes the flow’s data and stores it in the broadway_recovery_point
table under the k2system keyspace.

• If a failure occurs (e.g., outage), the flow can restart from the last saved point.

• Once execution completes successfully, the recovery data is automatically removed from the System DB

• Recovery Points are best used after completing a sub-process and before starting the next major stage of the
flow.

Limitations: Recovery Points cannot be set on:

• Stages with DB result sets

• Transactional Stages

• Stages inside iterations

Recovery point
How to Set a Recovery Point

• Open the Stage context menu (⋮).

• Select Recovery Point → a recovery icon appears on the Stage.

• Repeat for additional Stages if multiple Recovery Points are required in the flow.

Running a Flow with Recovery Point

Broadway flows with Recovery Points can be executed in three ways:

• Via the BROADWAY Command

• Must include a Recovery ID to enable the Recovery mechanism.

• If a crash occurs, rerun with the same Recovery ID to resume.

• Via the STARTJOB Command (Broadway Job)

• Recovery mechanism is enabled automatically.

• No need to specify a Recovery ID.

• Via Fabric Studio (Simulation)

• Set a breakpoint after the Recovery Point.

• Select Actions > Run with Recovery Point.

• When execution hits the breakpoint, click Stop Run to abort.

• Rerun with Recovery Point → flow resumes from Recovery Point.

Recovery point
RecoveryInfo Actor

• The RecoveryInfo Actor can be used to retrieve runtime recovery details,
including:

• Recovery ID

• Number of recovery attempts

• This Actor should be placed in the flow after a Recovery Point.

Recovery point
Automatic Flow Execution on Deploy

A Broadway flow can be executed automatically during a Logical Unit (LU) deploy.

• If a deploy.flow is defined under an LU, it will be triggered every time that LU is deployed.

• If deploy.flow exists only at the Shared level, it is inherited by all LUs.

• If a Soft Deploy is used, the deploy.flow will not be executed.

Auto-Generated deploy.flow

When a new LU is created, a deploy.flow is automatically generated with predefined constants:

• lu_name – Name of the deployed LU.

• nosync – Controls synchronization behavior:

• NOSYNC=TRUE: Only schema changes trigger a sync after deploy.

• NOSYNC=FALSE: Any deploy triggers a sync the first time an instance is accessed.

• is_first_deploy – Boolean indicating whether this is the LU’s first deploy.

• is_studio – true if deployed in the Studio debug environment.

Add Broadway jobs to deploy.flow if they must
automatically restart after a deploy.

Best practice:

	Introduction
	Slide 1: Course 13 Broadway: Beyond Actors
	Slide 2: Agenda
	Slide 3: Supported Data Types in Broadway
	Slide 4: Supported Data Types in Broadway
	Slide 5: Supported Data Types in Broadway
	Slide 6: Supported Data Types in Broadway

	Linking Actors
	Slide 7: Linking Actors

	Error Handling
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

	Reset Actor
	Slide 13

	Transactions
	Slide 14: Transactions in K2View Broadway
	Slide 15: Transaction Scope: Inner Flows & Iterations
	Slide 16: Transaction Scope: Various Iteration Examples
	Slide 17: Error Handling for Transactions
	Slide 18: NoTx Actor
	Slide 19: Transaction Best Practice

	Parallel
	Slide 20: Stage Actors Parallel Execution

	Build Actor
	Slide 21: Build a Custom Actor
	Slide 22: Create a New Actor
	Slide 23: Create a New Actor
	Slide 24: Inherit an Actor
	Slide 25: Inherit an Actor
	Slide 26: Override a Custom Actor

	Actor Parameters
	Slide 27: Actor Parameters
	Slide 28: Schema Property
	Slide 29: Editor Property
	Slide 30: Editor Property

	Broadway metrics
	Slide 31: Broadway metrics
	Slide 32
	Slide 33
	Slide 34: Broadway metrics

	Recovery Point
	Slide 35: Recovery point
	Slide 36: Recovery point
	Slide 37: Recovery point

	Deploy.flow
	Slide 38: Recovery point

