kaview

- E Alpinist

Course 11

Fabric Batch

WELCOME

Agenda

kaview

* What is a Fabric Batch?

* Batch command

* Managing Batch Processes

e Batch Monitoring Commands
* Batch behind the scenes

« Common tables dependencies
* Batch system_db tables

* Batch Actors

e Batch Config

What is Fabric Batch?

Fabric Batch is a built-in utility that executes fabric_command operations on a list of
instances, leveraging multiple Fabric nodes for parallel execution.

Key Features

o Distributed Execution
Configure which nodes will participate in running the batch across instances.

« Dynamic Load Balancing
Control the number of threads per node for optimal resource usage during execution.

. Failure Recovery
Automatically handles unresponsive nodes to ensure smooth execution.

« Pause & Resume
Supports stopping and resuming of long-running migration processes.

. Real-Time Monitoring
Track batch progress and performance by cluster, data center, node, or |ID
(via CLI or the Batch Monitor Dashboard).

o Detailed Tracking
Monitor execution time, duration, responsible node, and failure diagnostics at the
entity level.

kaview Supported Use Cases

Instance Sync (Migration Process) Broadway Flows

Runs sync operations across selected IIDs : Executes a Broadway flow across selected IIDs:

BATCH LU FABRIC_COMMAND="broadway
LU.SampleFlow SamplellD=?" with async=true;

BATCH LU ('LUI','LUI2','LUI3",'LUI4")
FABRIC_COMMAND-="sync_instance LU.?" with
ASYNC="true';

kaview Example

Consider a Broadway flow that generates report data for a single instance and stores the result in a database table.

The flow performs the following steps:

* Defines an external parameter named IID, which receives its value from the batch command
e Executes a GET operation on the given IID
e Calculates the report and loads the results into the database

calculatellDReport.flow X

Implementation > Logical Units > Customer5 > Broadway > [calculatellDReport.flow

Actions = > 0O oo QoS o A2 %

Input iD Sync 11D Run SQL statement on the... = e Load the result to the DB Eo External IID - Const

All Fields v
iid[o] [resull] params [resul] g D params affected

[l IIId[ﬂ affected sql

Inputs

value : string

External Name
11»]

You can use the batch command to run this flow across a list of IIDs:
batch Customer5 from CRM_DB using ('select customer_id from public.customer’) fabric_ command="broadway Customer5.calculatellIDReport
IID=?" with async=true;

Once the batch completes, the aggregated report data will be available in the database.

Batch Command

The Fabric Batch command allows you to execute a fabric_command
across a set of instances, with full control over execution behavior and
distribution.

Each Batch Command Defines:
1. List of Instance IDs (lIDs) - Which instances to process

2. Fabric Command - The operation to run on each instance

3. Execution Nodes — Which nodes in the cluster will participate

4. Thread Configuration - Number of threads per node (each handling
one lID)

Batch Command

The Fabric Batch command allows you to execute a fabric_command across a set of
instances, with full control over execution behavior and distribution.

Syntax:

BATCH IID_LIST FABRIC_COMMAND=FABRIC_COMMAND
[WITH
[AFFINITY="<affinity>']
[JOB_AFFINITY='<job_affinity>']
[ASYNC=true|false]
[GENERATE_ENTITIES_FIRST=true|false]
[ALLOW_MULTIPLE=true|false]
[MAX_WORKERS_PER_NODE=<number>]
[ESTIMATED_ENTITIES_ COUNT=<number>]];

kaview Batch Command

IID_LIST Options:

1. Full Fabric Population

e Allinstancesina LUT:
batch Customer fabric_command="'<fabric command>’
* query is built automatically using the SourceDbQuery of the root table

* Based on existing entity table records :
batch Customer from fabric fabric_command="'<fabric command>'
2. Subset of Instances

* Explicit list:
batch Customer.('1','2",'3") fabric_command="'<fabric command>’

* Instance Group:
batch Customer.iglOCustomersList fabric_command="'<fabric command>’

* Source query:
batch Customer from CRM_DB using ('select customer_id from CUSTOMER where customer_id <= 1000')

fabric_command="'<fabric command>’

kaview Batch Command

* Broadway result set (must return IID list):
batch Customer from fabric using (‘broadway Customer5.getList’) fabric_command="'<fabric command>’

Note: The BROADWAY command, executed within the ‘USING’ clause, will run as if the RESULT _STRUCTURE=CURSOR

3. Messaging Queue

* Dynamic instance set from a Kafka topic:
batch Customer from Kafkalnterfacel using (‘topicl') fabric_command="<fabric command>'
Note: Use batch_cancel to stop the process when using a dynamic feed like Kafka.

Example:
batch test1 from fabric USING('BROADWAY testl.testSub ,\"topic\"=S{topic} \"interface\"=\"S{interfaceName}\""')
fabric_command='sync_instance test1.?' WITH ASYNC=true; __. ...

Implementation > Logical Units > Customer r > Broadway > Batch > D testsub 1.flow

Actions = > 0O o~ Q AN 3

= Stage 2 = Stage 5 = Limit1 - Limit

All Fields v
M interface [message]
O
. @@

W topic

Inputs

script : string

value!="DCHE"

kaview Batch Command

Batch command output:

Batch_id — unique identifier of the batch process. To be used later in all Fabric’s batch commands.
Execution_id — used internally by Fabric.

|Execution id

fabric>batch Customer from CRM DB using {'select customer id from public.customer limit 200') fabric command='sync instance Customer.?' with async=trus;
|Batch 1id

|Notes|

e e e +————= +
| 7Teld355a-1470-4426-5b3b—ee5214e5£317 | 913e266a—a446—407£f-5ceb—ac554554a807 |[null |

kaview Batch Command

FABRIC_COMMAND Options:

This is the operation to be executed per IID. It must contain ? as a placeholder for the instance ID.
Examples:

« Sync (legacy migrate command):
"sync_instance Customer.?"

« Run a Broadway flow:
"broadway Customer5.SampleFlow SamplellD=""

« Republish via CDC:
"cdc_republish_instance Customer.?"

kaview Batch Command
WITH Options:

Parameter Description

AFFINITY List of nodes or data centers to execute the Fabric Command on
JOB_AFFINITY Affinity for the batch job itself
ASYNC If true, runs without job mechanism (default: false)

If true, pre-generates all entities before execution. Mostly used for checking the performance of the
GENERATE_ENTITIES_FIRST
functionality fetching the instance group.

Allows concurrent execution of the same batch command (default: false).
When ALLOW_MULTIPLE is set to true, a unique UID is generated for a batch process, allowing running
ALLOW_MULTIPLE _ _ _
- the same command again - before the first command is completed. The reason for that can be for

example, when the subset of instances is created based on a random entity selection

MAX_WORKERS_PER_NODE Limits the number of worker threads per node (cannot exceed the config-defined max)

Estimated number of entities to process (for monitoring/statistics only).
ESTIMATED_ENTITIES_COUNT . L) L
- - Used until generate_iid_list ends or exceed the provided estimation

The maximum number of Fabric nodes that can participate in the batch process (random nodes).
MAX_NODES If Affinity is used — select random from the suitable nodes.
Can be used, for example, when the number of connections is limited on the source side

Managing Batch Processes

Canceling a Running Batch

Use the batch_cancel command to stop a running batch process.

e batch_cancel '<batch_id>'";
Cancels the specified batch process, regardless of the coordinating node.

e batch_cancel;
Cancels the most recent async batch process started in the current session.

Pausing a Running Batch

Use the batch_pause command to pause an active batch. The batch status will be set to
PAUSED, and it can later be resumed using batch_retry command.

e batch_pause '<batch_id>';
Pauses the specified batch process.

e batch_pause;
Pauses the most recent async batch process started in the current session.

Managing Batch Processes

Resuming a Paused or Cancelled Batch

Use the batch_retry command to resume a paused batch, or optionally retry a cancelled one.
batch_retry '<batch_id>' [allow_cancelled=true|false];

Note:

. Applicable only for async batch process.
. Ifthe batch completed before the pause, only failed instances will be retried.
. If the batch was paused mid-execution, all remaining unprocessed instances will be executed.

. The allow_cancelled flag (default: false) determines whether cancelled batches can be
retried. Set to true to allow retrying a cancelled batch.

« Use batch_pause when you plan to stop the batch temporarily:
. Afixis needed (e.g., in the DB or implementation).

. After the fix, you can use batch_retry to continue processing both failed and
unprocessed entities.

. Use batch_cancel when you do not intend to resume the batch:
. The process is being terminated permanently.

. No further execution or retry is expected.

Managing Batch Processes

Editing Batch Parameters at Runtime

Use the batch_edit command to update certain parameters of a running batch.
BATCH_EDIT ['<batch_id>'] paraml=<valuel> param2=<value2>

Supported Parameters: MAX_WORKERS PER_NODE — Set the number of workers
per node (must not exceed the limit in config.ini).

Note: All batch processes share the total worker pool per node.

kaview

Legacy Support: Migrate Command

The migrate command is a legacy, simplified form of the batch command, specifically designed for migrating
instances into the Fabric database.

MIGRATE <LU>[@<DC>] WITH ASYNC='true’;

How It Works:

Behind the scenes, Fabric translates the migrate command into a batch command. This means all Batch-related
options and parameters can be used with migrate — except, no need to explicitly define the FABRIC_COMMAND.

Example Equivalence:
The following two commands are functionally identical:

e MIGRATE Customer@DC1;
e BATCH Customer@DC1 FABRIC_COMMAND-='sync_instance Customer.?’;

Use migrate for convenience when running standard sync operations. For advanced control, use batch directly.

kaview Batch Monitoring Commands

List Batch Processes

batch_list [STATUS='<status>'] [FROM_DATE='<from date>'] [TO_DATE='<to date>'] [FILTER='<filter criteria>'];

Description:

. Lists batch processes based on status, time range, or specific filters.
. If noarguments are provided, only active batch processes are listed.

Options:

. STATUS: Possible values: NEW, GENERATE_IID_LIST, IN_PROGRESS, FAILED, CANCELLED, DONE, ALL
. FROM_DATE, TO_DATE: Use DATE_FORMAT or DATETIME_FORMAT as formatted in config.ini

. FILTER: Filters batch processes based on a substring or regex match within the batch command, fabric command, or
execution ID.

fabric>batch_list STATUS='DCNE' FROM DATE='2025-04-30' filter='Customer5';

Exa m p les 04 | 1d |Status|Start date |Completion %|End date |Fabric command
L] . .
id

eeeeeee |Exrror|

| 7d522810-ee32-45c0-bf45-6cdba2cBecc4 |DONE |Wed Apr 30 19:08:13 UTC 2025(100 |Wed Apr 30 15:08:15 UTC 2025|broadway CustomerS.calculateIIDReport I

° batch list STAT' |S='ALL'. 27295a-2054-4087-985b-accSc£05a184 null |
— ’ |aB84ba697-clde-465b—-8abf-c20dc2a92¢6akb | DONE |Wed Apr 30 15:08:54 UTC 2025|100 |Wed Rpr 30 15:08:55 UTC 2025 |broadway CustomerS.calculateIIDReport I

27a9%5a-e054-4087-985b-acc9cf05al84 | null |
| 52304c0£-8453-4d26-a829-01bd44bd1d58 |DONE |[Wed Zpr 30 19:0%:30 UTC 2025(100 |Wed Zpr 30 15:05:31 UTC 2025|broadway CustomerS.calculateIIDReport I

* batch_Llist STATUS='ALL' FILTER="sync_instance’; eeerssoeromssecsemmenimn |

*The second command returns the same results as migrate_list STATUS='ALL';

Batch Monitoring Commands

View Batch Command Details

batch_info '<batch_id>';

fabricr*batch_info '7eld355a-1470-4426-5b3b-ee5214e5£317";

| key | walu=

e o
|Batch command |batch Customer from CRM DB using ('=zelect custcmer_id fro
| LT Name | Customer

| Command Type | Sync

| Fabric Command |sync _instance Customer.?

|IMax no. workers per node | 8

|Entity Inclusion |zelect customer_id from public.customer limit 200

| Source Interface | CRM DE

| 3enerate Entities First | fal=se

|2ffinity |

| Jokb BREffinity | Dol

| A=ync | true

|Max No. of HNodes |11

| Environment | _dew

|[21low Multiple Batch Executions|false

| Execution id |91l3eZcba—ad44c—407£-%ceb—ac354554a807

{(1l5 rows)

kaview Batch Monitoring Commands

View Batch Execution Summary

batch_summary '<batch_id>’;

Provides:

* Execution Levels: Per Node / Per Data Center (DC) / Per Cluster

* Timing: Start and end time

 Total duration

* Progress Estimation: Remaining time and instances (available after IID generation)
* Statistics: Number of instances: synced/failed, added/updated/unchanged

* Pace Metrics: Sync rate per second (last BATCH_PACE_CALC_TIME_WINDOW_MS time window and average since the batch started)

ad- d|
31b-113a-4e0f - 1|

|
| DONE

(8 rows)

kaview

View Currently Running Instances

batch_in_process FILTER='<filter regex>’;

Displays active instance processing across all running batch processes.

fabricrbatch_in_process;
| Hode

+ ——— ——— ——— —+—=

|Batcsh process id

|Entity id|Lu type

|Duration {(ms) |Exeid|Task id|Command

Batch Monitoring Commands

|Notes|

|dev-fabric-deployment-848b7d5£85-ddmS7 |1617cc02-1£24-42b5-5826-al1£33b044££1| 565
|dev-fabric-deployment-848b7d5£85-ddmS7 |1617cc02-1£24-42b5-5826-al1f33b044££f1 | 564
|dev—fabric-deployment—848b7d9f89-ddm57 |1617cc02-1f24-42h5-9826-a1£33b044£ff1 574
|dev—fabric-deployment—8§48b7d3f89-ddm37 |b06cbefEe—aSb5—-4bT7a-b323-150ea%6a7df5| 535
|dev—-fabric-deployment—8§48b7d3f89-ddm37 |b06cbecfe-aSb5—-4bT7a-b323-150ea%6a7df5 | 541
|dev-fabric-deployment-848b7d3£85-ddmS7 |b06cbcfE-a5b5-4b7a-b523-150ea36a7df9 | 548
|dev-fabric-deployment-848b7d3£85-ddmS7 |b06cbcfE-a5b5-4b7a-b523-150ea%6a7df9 | 546
|dev-fabric-deployment-848b7d5£85-ddm37 |b06cbcfé-a5b5-4bT7a-b523-150ea%6a7d£9| 552

(8 rows)

Notes:

- Use the process ID to identify the batch.

. ———+

| CustomerS |52
| CustomerS| g5
| CustomerS |26

| Customer |183
| Customer |158
| Customer |108
| Customer |80
| Customer |36

t —+——

|b2e83 (100161
|b2e83 (100235
|b2283 (100376
|bSa48| 93938
|bSa48|100059
|bSa48|100133
|bSa48|100221
|b5a48|100346

b
| sync_instance
|zync_instance
|zync_instance
|zync_instance
|2ync_instance
| sync_instance
|sync_instance
|sync_instance

—t—
CustomerS. 7|
CustomerS. 7|
CustomerS. 7|
Customer. ?
Customer.?

|
Customer. ?
Customer. ¥

|

Customer.?

- The number of records shown are limited by MAX_WORKERS PER_NODE shared across all active batches.

kaview Batch Monitoring Commands

View Instance-Level Sync Details

fabric>batch_details '1617cc02-1£24-42b5-5826-alf33b044£ff1" sort_by process_time=true;

|Entity ID|Node id | Processed time (ms)|S3tatus |Results |

|218 |dev-fabric-deployment—-848b7d9£85-ddm97 | 225 | COMPLETED| { "Added": 0, "Updated":1, "Unchanged":0} |

. . 1221 |dev-fabric-deployment-848b7d%£85-ddm97 215 | COMPLETED| { "2Added": 0, "Updated":1, "Unchanged":0} |

batch deta i IS '<batch |d>' 1645 | dev-fabric-deployment-848b7d9£89-ddms7 | 216 | COMPLETED| { "&dded”: 0, "Updated": 1, "Unchanged": 0} |
—_— f— |222 |dev-fabric-deployment-848b7d9£85-ddm97 | 216 | COMPLETED| { "2&dded": 0, "Updated":1, "Unchanged":0} |

| 505 |dev-fabric-deployment-848b7d2£85-ddm97 | 211 | COMPLETED| {"&dded":0, "Updated":1, "Unchanged":0} |

[STATU S='<Status>l] | 505 |dev-fabric-deployment—-E848b7d%9£85%-ddm97 | 157 | COMPLETED| { "Added": 0, "Updated":1, "Unchanged":0} |
|510 |dev-fabric-deployment-848b7d%£85-ddm97 153 | COMPLETED| {"&dded": 0, "Updated":1, "Unchanged":0} |

. . | 660 |dev-fabric-deployment-848b7d3£85-ddm57 | 152 | COMPLETED| {"2&dded" : 0, "Updated":1, "Unchanged":0} |

[ENTITl ES='<ent|ty1 entltyz >'] 1730 |dev-fabric—deployment-248b7d3£85-ddma7 | 188 | COMPLETED| {"Added":0, "Updated":1, "Unchanged”:0} |
’ rece |s01 |dev-fabric-deployment—-848b7d9£85—ddms7 [187 | COMPLETED| { "2Added" : 0, "Updated":1, "Unchanged": 0} |

[AFFINITY='<node_or_dc>'] (10 zows)

[LIMIT=<limit>]
fabric>batch_details "002943b4-1386-4d5£-860£f-5a38a2a8e31f" limit &;

[SORT_BY_PROCESS_TIME=true |false]; |Eevity IDINede id |seavas zrror

|Re=ults |

1215 |dev-fabric—deployment-848k7d5£85-ddm57 | COMELETED |

| {"&dded":0, "Updated":1, "Unchanged":0}
- |21¢6 |dev-fabric—deployment-848b7d5£85-ddmS7 | FAILED |com.k2view.broadway.exception.StageException: F1
()F)tl()r‘s: not a function class org.openjdk.nashorn.internal.runtime.ECMAException Cause: TypeError: null is not a func
|
1217 |dev-fabric—deployment-848k7d5£85-ddm57 | COMELETED |

. STATUS: WAITING, COMPLETED, FAILED e |(72ades® 0 Opdevea 1, ronchangen 01

|dev-fabric—deployment-848k7d5£85-ddm57 | COMELETED |
| {"&dded":0, "Updated":1, "Unchanged":0}
1219 |dev-fabric—deployment-848k7d5£85-ddm57 | COMELETED |

- ENTITIES: Comma-separated list of specific entity IDs | ("Added":0, "Updacedn:1, "Unchanged" 0} |

- AFFINITY: Filter by data centers or nodes

- LIMIT: Restrict result count (default limit is 10,000)

* SORT_BY_PROCESS_TIME: If set to true, displays only the 10 entities with the longest process times (overrides all other filters)

kaview Batch behind the scenes

Batch command

Batch Flow l
Record is added to
. batch list,
1. Batch Command Execution st me{?nﬁﬁoﬂ_hl B

o Anewrecord is created in the k2batchprocess.batch_list table.

o Key fields include:

——nMiD S
= bid: Unique batch ID (UUID) N il
* FABRIC_COMMAND, JOB_UID, and session_scope (containing the globals set on the session) L 4 ¥
. . - : Record is added to
Batch command metadata (source DB, LU, interface, affinity, etc.) | Execute the batch K2 Jﬂﬁmwﬁﬂ; .
: | nt status=
= status: NEW . ﬁﬁﬁuﬁdﬁ‘;&
| Mo job mechanism
Async vs. Sync
Async Mode (async = true) Sync Mode (async = false)
= Ajobrecordis createdin k2_system.k2_jobs = The batch runs directly on the current node, which acts as
= Type =BATCH_JOB the Coordinator Node

= UID =The batch command itself = No job record is created

®= The job is picked up by one of the nodes, which becomes

= Not backed by the job mechanism (no automatic retry or
the Coordinator Node

error recovery)

kaview Batch behind the scenes

Batch Flow

2. Coordinator Flow - Generate IID list
* The batch status in batch_Llist is updated to GENERATE_IID_LIST.

* |ID Retrieval Begins, based on the IID_LIST command

* If thisis a batch_retry:
* Retryonlyfailed IIDs > Exclude COMPLETED IIDs
* Retryall unprocessed lIDs »> Exclude both COMPLETED and FAILED IIDs
* Note: Filtered IIDs are not re-sent to nodes, but their previous results are reused in the final
batch statistics.
* |IDs are pushed into an in-memory queue (one queue per batch command):
* The queue has a size limit to prevent memory overuse (BATCH_MAX_ITEMS_IN_MEMORY
config.ini).
* Ifthe queue fills up, remaining lIDs are written to a file and then reloaded into the queue as
space frees up.
* ForeachlID, a record is created in batch_entity_info with a null status (initial state before

processing).

ATCH,

Job start

|

Check
batch_process_list
Status

uil

v } v
RESUME_FAILURE WAITING_FOR_JOB | [GEMERATE_IID_LIST]
Updste batchprocess_list
status to NEW
Execute the batch
process (job wrap the
batch)
Y
Fetch Fetch 11Ds from Fetch IIDs from
from system_db Source system_db
¥
Update batchprocess_lst status
to GENERATE_ID_LIST
Offzet to file
if queue exceed |+

MAK_ITEMS_IN_MEMORY

~ Add enfry to

batchprocess_entity_info,
status=null {if the node didn't
write the record already, in
case the batch loader is

working slow)

|

Update batchprocess_list
status to IN_PROCESS & |

total_entities

l
allk

In memory queue

kaview Batch behind the scenes

Batch Flow

« The Coordinator Node launches one thread per {aEaisasaas isianas ZIPTelM]
participating Fabric node. ! = L

* Each thread: E ____________ ‘r_-_
* Opens a persistent JDBC connection to its target E e —

node (The JDBC connection remains open until

1
i
1
1
1
1
1
1
1
1
i
rr
|

the node responds back with results).
* Sends up to MAX_BULK_SIZE messages.

= Coordinator - nods X2

b MAX WOMKERS "B} MOOE Thasmts |

° i Update
Each message contains a batch of up to el i | I | S I .
MAX_BATCH_SIZE_PROCESSING IID SR

: o s
b sendry rum gosus x
______________ - - (csnm e =l Thread 2 Fabri e
: i * b‘| | | 4 S spvmpeig .S i & s e e B g
nos)y
1 ! /
] : Wrbermal qussiss contains
1 aniries far ALL batch Tread Updata
i commands running in e = =D = |—a Fabrc_command
: i P, Eaicherooess_entty_ i
1] iz D, LUT, COMMAND
]
1
I Trenad Updala
b i s YV MEEAE P ¥ Faorc_cammand _!Mpm_mﬂq-_lnjr
Q ' .
Sand I]
MAYX_BULFK_EZE] '
1105 b @ h R 1 I
In case of resuma - Sliar HDs. (]
according InLIhni' rasuks. i m.:ﬁ;lqaln malzm :
a 1 rir=-r=° available guess | (F 5= T =T
+ . : eriries
1
- b |4 + ReadDsfrom (' _ . _ 2 2 i
T i QUL i
In memary quaue | | |

kaview

Batch Flow

* |ID Tracking for Reliability

The Coordinator keeps track of which IIDs are sent to each node.
This ensures recovery if a node goes down — unsynced lIDs, in the
node that went down, are returned to the queue and reassigned to
other nodes.

Note:

try to process IIDs it had already received.

* This can lead to duplicate processing (e.g., an lID might appear as

ADDED on one node and later as UPDATED on another).
* However, for batch statistics, only the first successful sync is
counted — duplicates are ignored.

* [fa node that previously went offline comes back up, it might still i

P e

MAX_BULK_BZE
11D By wach node.
In pase of resuma - Shar N0s.
accarding I thair resuks.

In mamary queua

Keap

SLOWEST PROCCISED STATS

showes! 06 shats

Batch behind the scenes

Wt WTETE_FIR_RORE

= Mada X1
]
1
1 =
B Mada X3
I R 1
:
-t
1
]
1 | (= Hada X8
1
S i b L
-
i
1
1
1 = Coordinator - nods X2
1
I bt MAK WLBKEME I'EIE MOOE Dhrambs | 1 I
1 d Updata
1 o- Thrgad 1 l—a{ Fabric_commang s_aniky_inf
H FAILEDICOMFLETED
. o
! [——r— o
------ 1= - iy mmm =i =~ o | Theadz | foa| Fabrc_command
i u]]n WAK EAICH S MHOSESS - = 5 _anily G
i HDs)
: Wehernal qussiss contains
anirias far ALL batch
] commands running n e D = Tresad | Fabic_commana | ”Dd:_hm -
kiacp: 1D, LUT, COMMAND
Treaag Upaata
- I#| Fatne commana ‘!Ilr-hnms'-_mnlv_l +

R
s,

i5 + availabi

ailabin
from each node:

kaview

Batch Flow

3. Node-Side Processing

a. Each node receives IIDs from the coordinator and places -t

them into a local queue.

i. The localqueue is shared across all active batch

commands running on the cluster.

ii. Each queue entry contains more than justthe IID — it
includes metadata like:

1T.Logical Unit (LU)
2.Fabric command
3.Execution context

iii. Because the queue is shared, threads on the node

may serve multiple batch processes concurrently.

Batch behind the scenes

= Maoda X1
= Moda X2
Maots X8

Coondinator - nods X2

T
¥

Lhsw MAK WOMKERS I'EIE HOOE Dhasts |

dlli

b

Fabch anbry om gosus
(oonlsimy @0 o = = = e =
MEE BE&ICH S MEDCESSIMG
[[]=4]

brlfesnal cpssiss containg
eniras for ALL batch
COMIMands running in e
clusher.
Blzape D, LUT, COPMMAND

Aggregaie sl thrsad
resUks, Lok resils
______ avallabls gusiss | ET = === T==|m =T =
e

=D = Thrgad 1

Fabric_command

Upidata
l—falchprooess enlly nfo
FAILED'COMFLETED!

Thrgad T

Fabric_comimand

Updats
'_tnl.d'ms_tnﬂ'.-_rﬂ:h

Treaad

Fabiic_command

Updiate:
_Euld'n'nmﬂ_nn'lt'.-_rﬂ:-

Triread
W _ETRAIRE_FIR_RCED

Fahrie_command

Updala
procoss_antity_in

F]

kaview Batch behind the scenes

Batch Flow

b. Thread Management

i. Each node runs MAX_WORKERS_PER_NODE threads. - Noda 1
ii. Each thread: - { el
1.Pulls a message from the queue = o 22
(default: up to --
MAX_BATCH_SIZE_PROCESSING IIDs). = Wods 14
2.Processes the IIDs sequentially. =1 elle]
3.Removes the entry from the queue = Coardinaior -nads %2
after picking it up. L AR, WEBRESES e M T | .
o= D= Thraad 1 b=l Fabric comimand _hLd'mpd:_h:n‘lh_m
iii. Once a thread completes its set of lIDs: (5] e
1.1t collects execution stats for each A "|||4‘“'"wu-=ﬂ"§l'§‘-'m==-u """" et I o IRt =
IID (start time, end time, status, biernal s coriin:
commands running in e o= D= - Treead [~ Fabrdc_command _ﬁuu-mupd:t:nm_rﬂ:-
errors, etc.). .
2 . It u pd ates the J"'D_" o .q..':l;:::':n::rk nnge [T Farie_cammand _!mnrn:nr;iljnuw_ln+
batchprocess_entities_info table, !
marking each IID as COMPLETED. pr——r ERp—— :

kaview Batch behind the scenes

Batch Flow

c. Returning Results to the Coordinator

i. Once any thread on a node finishes processing its

assigned IIDs, the main thread on that node sends a I
response back to the Coordinator Node over the open 3
JDBC connection. iln —es
T
ii. The response includes:

1.Available queue slots on the

node

= Coordinator - nods X2

2.Aggregated execution results

b MAX WOMKESS I'EN MOOE [hambs |
1

from all threads: SSSaSERssSasamaass T Lpous

PO - Thread 1 l—#] Fabric_commang [malcheroness antly_infe
. Batch ID (bid)

o FAILEDVCOMPLETED

el sndry om gosus

a
-rH b | ”d o et .yt SO b oo ~fils— — ~¥ Thread 2 ¥ Fabric_commang g ”Pd:_-h:m_m
b. 11D s
Iternal guss contains
c. LU m:_";“:_’;:;_’ﬁ';n';‘:h L - D - Treaad | Fabric command |4 ”"d:_":m_m
e, |n.'|:.lnlj|?v:'uuumn
d : Start tl me’ end tl me A hnitd 7 .a\..':l;:::::rk noge[T# Fabiie_cammand _!Ihchnrn;:‘::nm}' InJr
: _antity |
e. Execution result (status, error, etc.) :
]
Rgoregaln Fotur Ihua -
W d oo rasuls, pount b I'HEI.IE__ At
available gueie | [T T T

kaview

Batch Flow

4. Coordinator Result Handling
a. Uponreceiving results, the Coordinator:
i. Maintains a Top-10 Slowest IIDs List

1T.Compares the new results to the
current slowest IIDs across all
nodes and threads.

ii. Updates Batch Metrics
1.Calculates overall statistics

2.Updates the batchprocess_list
and batchprocess_node_info
tables with the latest execution
data.

b. Once all lIDs processed, the batchprocess_list status is
updated to DONE.

Batch behind the scenes

MAX_EULK_BEFE
1ID% o each node.
In case of resume - Slier IDs
acconding lo their resuks.

1
[||q Rzaa DS from 1

queLs

mary QUL

Kanp

SLOWEST PROCCISIL STATS CHME e
showvecs! I0% stats

I
U

i

1
i
1

1
I
1

I
I]
I L]
1
1
i
1
1
I
1
I
I
U
1

Cakulaie skabs
evnry BATCH PACE CALL TIME WINDOW M5

I
I
¥
Upedakta
balchprocess rods info
[l stats akcapt tha D
lavad)

Heilabin onines in OGS QLR I

Lo MAK WOMKEMRS I'El MOOE Dhrass |

Inbernal gueise contains
eniries for ALL baich
COMmmands running in
clushar.

[Blaep WD, LUT, COMMAND

Agaregain
rasuls, cour
availabhe quee

Batch behind the scenes

MAX_WORKERS_PER_NODE

When MAX_WORKERS_PER_NODE is specified in the batch command, no
queue is created on the Fabric nodes and the batch will work slower:

The Coordinator sends a fixed-size batch of
MAX BATCH_SIZE_ PROCESSING IIDs.

The node must complete all [IDs in that batch before sending results back.

Only after sending the results back will the next batch of IIDs be sent

Batch behind the scenes

Batch Statuses

e WAITING_FOR_JOB - The batch command was executed, but the job has not
started yet.

e NEW - The job has started, but the batch process has not begun execution.

e GENERATE_IID_LIST - The batch is generating the list of instance IDs (lIDs) to
process.

e IN_PROCESS - All IIDs have been fetched, and sync operations are ongoing.
e DONE - The batch has completed successfully.

e FAILED - The batch command failed (not individual 1IDs). See
batchprocess_list.error for the failure message.

e CANCELLED - The batch was cancelled using the batch_cancel command.
e PAUSED - The batch was paused using the batch_pause command.

e RESUME_FAILURES - A batch_retry was issued after a previous execution
completed. Only previously failed instances will be reprocessed.

Batch behind the scenes

Handling Dynamic Cluster Nodes During Batch Execution
Node Failure (Node Going Down)

. Ifanode goes down during a batch:

o The Coordinator tracks which IIDs were sent and not yet acknowledged.
o These unprocessed |IDs are returned to the coordinator’s internal queue and
redistributed to other active nodes.

. Ifthefailed node was the Coordinator:

o The batch job will be restarted on another node (that will become the new

cooredinator).

Node Recovery

. Ifafailed node comes back online, it may still attempt to process previously
assigned IIDs.

. Duplicate processing may occur, but only the first successful sync is counted in
the statistics.

Batch behind the scenes

Handling Dynamic Cluster Nodes During Batch Execution

Node Join (New Node Added)

During the migration, the Coordinator checks for newly added nodes (every
CHECK_FOR_ADDED_NODES_INTERVAL_MS ms, default: 10 seconds).

When a new node joins, the Coordinator starts a new thread for it.
The node is then assigned IIDs and begins participating in the batch execution

Batch behind the scenes

Batch cancel/resume

When a batch_cancel/batch_pause command is issued:

Fabric sends a JDBC-based notification to all participating nodes indicating that
the batch is being cancelled.

Nodes will:

o Not process any |IDs that are still in the queue (related the cancelled/paused
batch id).

o Allow currently running IIDs to complete gracefully.

. The batchjob updates the batchprocess_list table with status =
CANCELLED/PAUSED.

fahric}hatch_pause '"l14a8fTed-c3dd-4aSl-aiZobh—54cd4451lefed’;
{1l row atfected)
fabric>

=,

Batch behind the scenes

Batch retry (resume)

When the batch_retry command is executed, Fabric determines how to resume the
previous batch based on its last known status:

1. If the previous status was DONE, the new status is set to RESUME_FAILURES.
2. Forallother statuses, itis setto GENERATE_IID_LIST (not NEW).

Job Startup Logic:

Upon job start, Fabric checks the current state to determine how to load the |ID list:

. If status =DONE: IID list is loaded from system_db.
« Otherwise:

o Ifthe lID generation step was not completed, the system re-fetches the IID list
from the source and inserts it into Cassandra.

o IflID generation was completed but the batch did not finish, the system
reuses the |ID list stored in system_db from the previous run.

Batch behind the scenes

Batch retry (resume)

Distributing IIDs to Nodes:

« AlIIDs are fetched from the system_db .
. The Coordinator:
o Sends only lIDs that need to be synchronized.

o Skips lIDs that were already successfully processed, but uses their previous
results to update batch statistics.

Note:

When the IID_LIST is based on pub/sub, the Broadway flow that streams [IDs must
clearly indicate when the lID list is complete (e.g., via not nextPage or an end-of-stream

signal). . - -
fabricr*batch_retry 'l4a8f7ed-c3dd-4a5l-a26b-54cd4451efeld’;

|Re=zult |
|Batch process resumed|

{1 row)

Batch behind the scenes

Sync mode

When a batch is executed without async=true, it runs in synchronous mode
directly on the current node, without using the job mechanism. As a result:

1. The prompt remains blocked until the batch completes.
2. Pause and resume options are not supported.

. There is no automatic recovery if the Coordinator node fails—Fabric will
not resume the process, unlike in async mode with job support.

Batch behind the scenes

Batch_in_process

When the batch_in_process command is executed, the Coordinator sends a
request to all participating nodes to report the status of currently running
IIDs.

Session scope

Just like in the job mechanism, session scope variables are shared across
all threads involved in the batch execution, and executed before running the
bulk of IDs (MAX_BATCH_SIZE_PROCESSING) on the node side.

. The session scope is stored in the arguments column of the
batchprocess_list table.

. Thesevariables ensure consistent context and global values across the
entire batch process.

Batch behind the scenes

Common tables dependencies

If the LU Schema relies on a Common Table, Fabric performs a dependency
check before the batch starts:

The JDBC connection first requests the remote node to verify that the
required common table has been executed.

If a node does not have the required common table loaded, it will not

synchronize any lIDs.

The JDBC connection will withhold results until the common table has
completed its sync.

This prevents worker threads from getting stuck on IIDs that depend on
missing common data.

Batch system_db tables

All batch-related tables are stored under the k2batchprocess schema.
These tables have a Time-To-Live (TTL) of 7 days.
TTL Handling:

If system_db is Cassandra: TTL is enforced at the table level using
Cassandra's native TTL configuration.

For other database types: A dedicated cleanup job runs periodically to
delete records older than 7 days.

Note: The 7-day retention period is hard-coded and cannot be modified by
Fabric.

kaview Batch system_db tables

batchprocess_list table

Stores metadata for each executed batch command.

$ S SEs < et < e

25757041-394d-481... {"FABRIC_COMMA. .. batch Customer fro... 2025-05-2112:18:0... 2025-05-2112:22:3... null {"slowestProcessed”... = Customer shani@k2view.com.... = 2025-05-21 12:18:0... DONE 1000

o Bid - Unique batch identifier (UUID)
o arguments - JSON containing:
o Batch command parameters (e.g., FABRIC_COMMAND, SRC_DB_QUERY, lu_name, IS_ASYNC, etc.)
o session_scope object with global variables and authenticated user details
o command - The full original batch command string
° create_time, start_time, end_time - Timestamps for when the batch was created, started, and completed
o error - Error details if the batch process itself failed (not per-entity errors)

o extra_stats - Tracks the 10 slowest processed. Example: {"slowestProcessed":[
{"entityld":"246","processTimeMS":10372,"status":"COMPLETED","result":"{}","nodeld":"shani-mountain8-solutions"},
{"entityld":"236","processTimeMS":10373,"status":"COMPLETED","result":"{}","nodeld":"shani-mountain8-solutions"}, 1}

o lut_name - Logical Unit name of the instances being processed
o owner - User who executed the batch (e.g., shani@k2view.com.k2v)
D status - Current state of the batch (e.g., NEW, IN_PROCESS, DONE, etc.)

o total_entities - Total number of |IDs processed (populated after generate_iid_list)

kaview Batch system_db tables

batchprocess_node_info table

Stores a per-node summary of entities handled during a batch process.

29757041-394d-4816-9951-cd6c... | shani-mountaing-solutions {"Added":210,"Updated":10,"Unchanged™0} DC1 29608987198467296 220 2025-05-2112:19:06.195

o« aggregated_results
Total number of entities processed on the node, categorized by:

o added
o updated

o unchanged
. pace - Processing speed — number of entities handled in the last BATCH_PACE_CALC_TIME_WINDOW_MS ms (default 10 sec).

- failed_entities_count - Total number of entities that failed during processing on the node.

. succeeded_entities_count - Total number of successfully processed entities on the node.

kaview

Batch system_db tables

batchprocess_entities_info table

Stores detailed execution data for each individual entity (lID) processed within a batch command.

fdalclcc-6c22-4785..

2025-05-21 12:28:2...

null

null

null

null

null

null

fdalclcc-6c22-4785... 253 2025-05-2112:28:2.. 2025-05-2112:29:0... shani-mountaing-sol... = {} 2025-05-2112:28:5... COMPLETED
fdalclcc-6c22-4785... 323 2025-05-2112:28:2... | 2025-05-2112:30:2... shani-mountaing-sol... | {} 2025-05-21 12:30:1... | COMPLETED
fdalclcc-6¢22-4785... | 386 2025-05-21 12:28:2... null null null null null null
fdalclcc-6c22-4785... 529 2025-05-21 12:28:2... null null null null null null
fdalclcc-6c22-4785... 830 2025-05-21 12:28:2... null null null null null null
fdalclcoc-6c22-4785... 244 2025-05-2112:28:2... | 2025-05-2112:29:0... shani-mountaing-sol... | {} 2025-05-2112:28:5... | COMPLETED

Purpose:

Tracks the outcome and status of every entity processed in a batch, including:

Execution time

. Status(e.g., COMPLETED, FAILED, null)
. Errors (if any)
. Results - for Broadway-based batches, this field captures the external output values returned by the flow execution.

kaview Batch system_db tables

batchprocess_entities_errors tables

Contains detailed error information for entities that failed during batch execution.

K] K K) KR L

51¢19243-6c68-4bc9-b86c-bcaldsd08493 com k2view broadway.exception. StageException: Flow: BatchFlowSleeplog Le... = shani-mountaind-solutions

51¢19243-6c63-4bc9-b36c-bcallsd08493 221 com k2view broadway exception. StageException: Flow: BatchFlowSleeplog Le .. = shani-mountaing-solutions

51c19243-6c63-4bc9-bd6c-bcallsd08493 222 com.k2view.broadway.exception.StageException: Flow: BatchFlowSleeplog Le... = shani-mountaing-solutions
Purpose:

For each failed entity (lID), this table records:

. The node ID that attempted to execute the sync

. The error message returned by the sync process

Batch Actors

BatchWait

The BatchWait Actor waits for a batch process to complete.

Behavior:

. Completes when the batch finishes successfully.

. Throws an error if the batch fails or exceeds the Wait For Seconds timeout.

. If Wait For Seconds set to zero or a negative value, waits indefinitely.

. Interface itis setto fabric as default and can be changed to remote Fabric Interface

. Ifthe batch is paused, the actor continues waiting. If the batch is cancelled, the

actor will exit gracefully without error. e —

B2 | BatchWait1

batchld : siring

O u t p ut : - waitForSeconds integer
Batch stats.

Batch Actors

DbCommand

Use the DbCommand actor to execute batch command.

DbCommand1 : DbCommand

Execute batch command = % Wait and get statistics =
"d9dc9123-1...
DB| DbCommand1 Batch id B2. BatchWait]
It - 100

[rBatch id"=..

P B .
3 Execution id] camiiiig
Notes I
2025-04-29 .. Inputs

All Fields v

“2025-04-29
duration 'j interface : string

- fabric w
s
sql : string
batch Customer5 from CEM DB using ('select customer id from public.customer limit 100') fal

e8] 34

Batch Config

config.ini — batch_process Section

Primary Configuration Parameters:

MAX_WORKERS_PER_NODE (default: 8)
Number of threads allocated per node for running all batch processes.
*Replaces the deprecated JOB_SERVERS_WORKERS_COUNT parameter.

MAX_BATCH_SIZE_PROCESSING (default: 5)
Maximum number of entities processed per message on the node side.

Batch Config

config.ini — batch_process Section

System DB Loader Configuration

Used when writing batch metadata to system_db (lIDs to
bachprocess_enteties_info). Fabric automatically detects the database type
and applies the appropriate loader:

Defaults by DB Type:

. ForJDBC-based DBs: jdbc_default_loader

. For Cassandra: default _loader

You can override the settings by adding batch_process_loader Section.

It is recommended to create the batch_process_loader, to not override other

loaders functionality, with the below parameters
MODE = TOKEN_AWARE_BATCH (for Cassandra)/BATCH (for jdbc)

BATCH_SIZE = 100 (should be tuned based on the system_db type — may lead to
a huge performance improvement)

Batch Config

config.ini — batch_process Section

[jdbc_default_loader]

#MODE = BATCH ; Execution mode: SINGLE or BATCH
#QUEUE_SIZE = 10000
#BATCH_SIZE=1000 ; Applies only to BATCH mode

[default_loader]

#MODE = SINGLE ; Options: SINGLE / BATCH / TOKEN_AWARE_BATCH
#QUEUE_SIZE = 10000

#NUMBER_OF_THREADS =1

#SESSION_NAME = loader

#MAX_IN_FLIGHT = 1024

#CONSISTENCY_LEVEL = LOCAL_QUORUM

#IS_NOP =false

Batch Config

config.ini — batch_process Section

Hidden / Advanced Parameters

BATCH_DETAIL_MAX_ROWS_SIZE (default: 10,000)
Maximum rows fetched when executing batch_details. Required due to Cassandra consistency limitations.

BATCH_MAX_ITEMS_IN_MEMORY (default: 100,000)
Max queue size held in memory. Overflow is stored in file on the disk.
Should be tuned if Instance IDs are large.

BATCH_PACE_CALC_TIME_WINDOW_MS (default: 10,000)
Interval for Pace value calculation and system_db updates.

BATCH_UNITS_CACHE_EXPIRATION_IN_MIN (default: 1,440 minutes / 24 hours)
Time to retain nodes |IDs results in case Coordinator is down.

CHECK_FOR_ADDED_NODES_INTERVAL_MS (default: 10,000)
Frequency to check for new nodes joining the cluster.

COMMAND_JOB_UID_MAX_LENGTH (default: 1024)
Max length allowed for the batch command string used as the job UID (limitations in keyspace for 1024 bytes)

SLOWEST_PROCESSED_STATS_COUNT (default: 10)
Number of slowest processed IIDs to track in batch statistics.

	Introduction
	Slide 1: Course 11 Fabric Batch
	Slide 2: Agenda
	Slide 3: What is Fabric Batch?
	Slide 4: Supported Use Cases
	Slide 5: Example
	Slide 6: Batch Command
	Slide 7: Batch Command
	Slide 8: Batch Command
	Slide 9: Batch Command
	Slide 10: Batch Command
	Slide 11: Batch Command
	Slide 12: Batch Command
	Slide 13: Managing Batch Processes
	Slide 14: Managing Batch Processes
	Slide 15: Managing Batch Processes
	Slide 16: Legacy Support: Migrate Command
	Slide 17: Batch Monitoring Commands
	Slide 18: Batch Monitoring Commands
	Slide 19: Batch Monitoring Commands
	Slide 20: Batch Monitoring Commands
	Slide 21: Batch Monitoring Commands
	Slide 22: Batch behind the scenes
	Slide 23: Batch behind the scenes
	Slide 24: Batch behind the scenes
	Slide 25: Batch behind the scenes
	Slide 26: Batch behind the scenes
	Slide 27: Batch behind the scenes
	Slide 28: Batch behind the scenes
	Slide 29: Batch behind the scenes
	Slide 30: Batch behind the scenes
	Slide 31: Batch behind the scenes
	Slide 32: Batch behind the scenes
	Slide 33: Batch behind the scenes
	Slide 34: Batch behind the scenes
	Slide 35: Batch behind the scenes
	Slide 36: Batch behind the scenes
	Slide 37: Batch behind the scenes
	Slide 38: Batch behind the scenes
	Slide 39: Batch behind the scenes
	Slide 40: Batch system_db tables
	Slide 41: Batch system_db tables
	Slide 42: Batch system_db tables
	Slide 43: Batch system_db tables
	Slide 44: Batch system_db tables
	Slide 45: Batch Actors
	Slide 46: Batch Actors
	Slide 47: Batch Config
	Slide 48: Batch Config
	Slide 49: Batch Config
	Slide 50: Batch Config

