
Alpinist

Course 8

Globals
MTables

Agenda
W E L C O M E

• Globals
• What are Globals

• Global types

• Cluster Globals

• Session Globals

• Thread Globals

• Override Cluster Globals

• Reset Cluster Globals

• Using Globals in SQL Statements

• Mtables
• What Is an Mtable

• How to create Mtable

• MTables Storage Settings

• How to work with Mtable

Globals

Globals refer to variables that are accessible from anywhere within a
program. This means that they can be used in any class or method
without needing to be explicitly passed as arguments.

Global types

Fabric supports three types of Globals:

1. Cluster Globals – defined in the Fabric Studio. Can be accessed
by any function or component (unless defined for a specific LUT,
and then can be accessed only by functions defined under this
specific LUT).

2. Session Globals – created on-the-fly at a session level and
accessible only within that specific session.

3. Thread Globals - created on-the-fly at a GET level and are
accessible only within that specific sync process

Cluster Globals

Define Cluster Globals

There are two locations within Fabric Studio to define Cluster Globals:

1. SharedGlobals.java: Found under Shared Objects/Java/src.
Globals defined here are accessible to all project components, including BW flows, functions, web

services, common tables, etc.

2. Globals.java: Located under each Logical Unit/Java/src (except for web services). Globals defined in

this file are only accessible to components created within that specific Logical Unit.

All Globals defined in either the SharedGlobals.java or Globals.java are deployed with their default

(initial) values as specified on their declaration.

1. If a Global is defined at both the Shared Objects level and the Logical Unit
level, the definition in the Logical Unit takes precedence within its scope.
Other Logical Units will use the Shared Objects definition.

2. Globals have to be of type String

Note:

Cluster Globals

When a global is defined in SharedGlobals.java, it is “inherited” by all Logical Unit types.

However, when a global is defined in a specific Logical Unit (Globals.java), it is limited to that specific

Logical Unit.

Global defined in SharedGlobals.java Global defined in Globals.java

Use SET command to see the Globals defined

The first "Global" prefix is
displayed since the SET command
also displays non Globals variables

Note:

Cluster Globals

Retrieve Cluster Globals values

• Using Fabric SET Command:

Use the following code to fetch the Cluster Global value: fabric().fetch("set CLUSTER_GLOBAL_TEST").firstValue();

• Using BW Actors:
Use FabricSetRead to retrieve the Cluster Global value.

• Using Java Code:
To get the Cluster Global value, use one of the following methods:

o getGlobal(String globalName, String lu) - Retrieves the Logical Unit's global value for this session.

Example: UserCode.getGlobal("CLUSTER_GLOBAL_TEST", "Customer");

o getGlobal(String globalName) - Retrieves the global value for this session.

Example: UserCode.getGlobal("CLUSTER_GLOBAL_TEST");
Note: If there is a conflict in global values between Logical Units, an exception will be thrown.

• Using the Global name directly:
Every Logic.java file imports the Global declaration files, allowing you to directly use the Global name in your code.

// Import shared Globals
import com.k2view.cdbms.shared.Globals;
// Import Globals from the Logical Unit
import static com.k2view.cdbms.usercode.lu.<LU name>.Globals.*;

if(CLUSTER_GLOBAL_TEST.equals("…")) {
// Perform logic based on the global value

}

Session Globals

Globals can also be declared and used at a session level. In this case, the Globals are defined on-the-fly

within the session and are terminated once the session ends.

• To create and set (or modify) a session global value, use the following command:

fabric().execute("set GLOBAL_NAME=GLOBAL_VALUE");

• To retrieve the value of a session global, use:

fabric().fetch("set GLOBAL_NAME").firstValue();

• For BW flows, use FabricSetRead and FabricSet BW Actors to read and set the session Globals.

Specifying a session variable does NOT create it as Shared Object.
Therefore, it is not displayed under each LUT (if it is not
specifically created for it,) and will not have the Global or LUT
prefixes.

Note:

Thread Globals

Thread Globals are designed for use exclusively within GET operations, enabling the sharing of

values across populations, decision functions and enrichment functions. These Globals are defined

dynamically, on-the-fly, within the thread and automatically terminated when the GET operation

completes.

Methods to work with Thread Globals:

➢ setThreadlobals(String key,Object value) - create Thread Global

➢ getThreadGlobals(String Key) - get Thread Global value

➢ clearThreadGlobals() - Clear all Thread Globals, created on the thread level

Note:

➢Unlike Cluster or Session Globals, Thread Globals also support data types beyond just strings.

➢Thread Global cannot override Session Global.

Override Cluster Globals

If the final keyword is added to a Cluster Global definition, the Global's

value becomes immutable and can only be changed by redeploy.

When final is not declared, Cluster Global value can be overridden with or

without re-deploying the project, at the following levels:

• Implementation level – by updating the SharedGlobals.java or

Globals.java files and re-deploying.

• Environment level – by modifying the Environment file in Fabric Studio

and re-deploying.

• Cluster level – at run time, using the set_global global command.
set_global global CLUSTER_GLOBAL_TEST =newValue;

• Session level – at run time, using the SET command.

fabric().execute("set CLUSTER_GLOBAL_TEST =newValue");

Override Cluster Globals

Override Cluster Globals From Studio

In case the value of a Cluster Global was not changed using

set_global command, you can change the value of the global in the

SharedGlobals.java or Globals.java file, and redeploy

Override Cluster Globals From Environment file

The default values for Cluster Globals, defined in the

SharedGlobals.java and Globals.java files, are used for the _dev

environment, which is the default environment for each cluster.

However, these defaults can be overridden for other environments.

When creating a new environment, a Globals tab is available that

allows you to modify the values of the Cluster Globals (as defined in

SharedGlobals.java and Globals.java) specific to that environment.

Override Cluster Globals

Override Cluster Globals per Environment

Once an Environment is applied to a cluster, the Cluster Globals will use the default values defined for

that environment.

To switch environments and assign the appropriate global values, use the SET ENVIRONMENT command:

• set environment='UAT' to apply the default values defined for the UAT environment.

• set environment='_dev' to revert to the default values defined in the SharedGlobals.java and

Globals.java files for the development environment.

Override Cluster Globals

Overriding Cluster Globals on a cluster level

Cluster Global value can be overridden for the entire cluster, for all running sessions.

• Use set_global global command to change the Cluster Global on runtime.

set_global global '*.CLUSTER_GLOBAL_TEST=value1’

Set_global can be used only for Cluster Globals. You cannot

define Cluster Global on-the-fly

Note:

Override Cluster Globals

Overriding Cluster Globals on a cluster level

Shared Global can be overridden for a specific LUT.

set_global global ‘Customer.CLUSTER_GLOBAL_TEST=value2’

If the set_global global command is using a specific LUT, when
fetching this value later, using SET command or getGlobal function,
Fabric will throw exception in case value is different between
the LUTs.

Note:

Override Cluster Globals

Override Cluster Globals per session on runtime

• Use set command to change the Cluster Global on runtime, for a

specific session.

• The Cluster Global can be changed for a specific LUT or for all

• Set *.CLUSTER_GLOBAL_TEST=value1;

• set Customer.CLUSTER_GLOBAL_TEST=value2;

When a Cluster Global is overridden at the session level, it
will appear as a "new" global in the SET command, which is
a presentation feature indicating that the value has
changed.

Note:

Override Cluster Globals

Level Priority Where to define How to override How to retrieve How to reset

Global 4 SharedGlobals.java

Globals.java

Deploy GetGlobal function

SET command
BW – fabricSetRead

GLOBAL_NAME
Environment 3 Environment Deploy

Runtime - cluster 2 Runtime set_global command
set_global global ‘*.GLOBAL_NAME’

Runtime - session 1 Runtime SET command
BW - fabricSet

GetGlobal function

SET command
BW - fabricSet

SET GLOBAL_NAME=’’

Notes:

• A Global value will always take the value set on the lowest level:

• First priority – Session level (SET command)

• Second priority – Cluster level (set_global command)

• Third priority – Environment file

• Last priority – SharedGlobals.java / Globals.java

Cluster Globals Levels and Proprieties

Override Cluster Globals

• When a Cluster Global is overridden at a lower level, subsequent changes made at a higher level will not affect

the lower levels. To allow changes at the upper level to propagate to the lower levels, the global must be reset

at the lower level.

For example:

o If a Cluster Global is modified at the session level using the SET command, changing it at the cluster level

using set_global will not update the session-level value.

o If a Cluster Global is modified at the cluster level using the set_global command, changing it in Studio and

redeploying will not affect the value.

• A Cluster Global can be overridden for a specific LUT level. After being overridden, the global behaves

independently:

o Changing the Cluster Global with set_global, without specifying a specific LUT, will not alter its value.

o To reconnect the global to its higher levels, it must first be reset using the specific LUT.

• Cluster Globals can be modified or overridden at the cluster or session level.

getGlobal, the SET command, and BW Actors will return the session-level Global value, while using the global

name directly will always return the cluster-level value.

Reset Cluster Global value

Resetting a Session Global to the Cluster Global Value

To reset a Cluster Global to its default value, use the set_global command without specifying

=<PARAM_VALUE>.

Resetting will revert the value to its default as defined in the Environment file, or if no environment is in use, to its

default in SharedGlobals.java or Globals.java.

Note: If the Global was modified for a specific LUT, you must reset that LUT ’s Global explicitly. Resetting for *.Global will

not reset the specific LUT’s Global.

Reset Cluster Global value

Resetting a Session Global to the Cluster Global Value:

Running set <PARAM_NAME> = '' will reset the session-level global value to its original value based on

the following priority:

1. The value set using the get_global command.

2. The value defined in the Environment file.

3. The value defined in SharedGlobals.java or Globals.java.

• If the Cluster Global was modified for a specific LUT, you must also reset it specifically.

• The SET command will always display the values for the specific session, which may differ

from their current values in the Cluster.

Note:

How it works?

Fabric uses the k2system.global_settings table to store Globals data and any overridden values,

including those set by the set_global command and Environment settings.

This ensures that the Globals data is retained when Fabric restarts.

When the set_global command is executed, Fabric updates the global_settings table and uses fabric-
jdbc (TCP) to notify other nodes about the change.

Session Globals Integration in Job Execution

Jobs automatically receive the session_scope as part of their arguments, which includes Session Globals.

This means that when a Session Global is set and a job is run within the same session, the job will inherit
these global values and operate accordingly.

For example:

{"session_scope":"{\"scope\":{\"EXECUTION_ID\":\"8f5dcec4-0125-4915-
88c8daf8003519eb\",\"GLOBAL_TEST\":\"10\",\"LOG_ID\":\"b4050000000000bd\"}}"}

The same behavior applies to migration commands.

{"FABRIC_COMMAND":"sync_instance TestLU.?","JOB_UID":"","session_scope":"{\"scope\":{\"EXECUTION_ID\":\"8f5dcec4-0125-4915-88c8-
daf8003519eb\",\"GLOBAL_TEST\":\"10\",\"LATEST_BATCH\":\"45d294f5-bf9a-47af-8e9f-

070826397321\",\"IS_IN_BATCH_PROCESS_PROCESS\":\"true\",\"LOG_ID\":\"b4050000000000bd\"},\"user\":\"{\\\"type\\\":\\\"Authenticated
UserByCredentials\\\",\\\"username\\\":\\\“…

The BroadwayJob actor currently does not receive the

session_scope. This will be addressed in upcoming releases

Note:

Using Globals in SQL Statement

A global can be used in an SQL statement in an LU function. The syntax is: '@[global_name]@'.

For example:

public static String SCHEMA_NAME = "public";
public static Integer RECORDS_LIMIT = 5;

• Table population, sourceDbQuery Actor:

select * From @SCHEMA_NAME@.activity limit @RECORDS_LIMIT@

• Java code:

String sql = "SELECT * From ACTIVITY limit @RECORDS_LIMIT@”

ludb().fetch(sql, input1, input2).each(row->{

 yield(row.cells());
});

• Same structure for each BW DB Actors

Globals Best Practice

• Using set_global affects the entire cluster. Instead, use Thread globals within your schema functions

(such as populations or other LU functions).

For example, if a root function doesn't use the linking field as input, use a session global to add logic

that ensures it executes only once.

• Always clear session or thread globals at the end of your function or GET process. This ensures that if

another GET runs later in the same session, the session values will be reset.

MTables

What Is an MTable?

An MTable is an object created in Fabric memory from a CSV file. It

stores reference data as part of the Fabric project, allowing for fast in-
memory lookups during runtime.

MTables are best suited for small, static lists of reference data.

MTable replaces the Translation tables in

Cloud Studio.

Note:

MTables

How to create MTable?

1. Using a CSV File in the MTable Folder:

• When deployed, an MTable is created in Fabric memory based on the CSV file's structure and data and made

available on all Fabric nodes (other files in the folder are ignored).

• On a Fabric restart, the memory is released, and the MTable is reloaded.

• Each MTable can be accessed from any LU, regardless of where its CSV file is located in the project.

2. At Runtime with MTableLoad Actor:

• A new MTable created at runtime is available on a single node.

• To distribute it across nodes, use SET CLUSTER_DISTRIBUTE_AFFINITY = ALL.

• Note: MTables created or updated at runtime are lost after a Fabric restart.

SET CLUSTER_DISTRIBUTE_AFFINITY = is a new command, for
distributing the subsequent command to the specified affinity. Use
ALL to distribute the subsequent command to all live nodes
(working only on Fabric commands)

Note:

MTables

Notes

• Reloading an MTable deletes all existing records.

• If an MTable is created with an existing name, it replaces the
previous one in memory when deployed.

• Data lookup can be done using one or more keys. Search indices

are created during the first lookup, based on the search keys.

MTables

How to work with MTable?

Broadway Actors:

• MTableLookup - fetching data from an MTable by the given key(s).

If no keys are provided, the entire MTable dataset is returned (array of objects).

MTableRandom - for fetching a random row from an MTable.

The random selection can be limited by providing an input key(s).

This Actor returns one object only.

• MTableLoad - creating a new MTable dataset or replacing an existing one in the Fabric memory.

The MTable is then created on one node and must be distributed to other nodes.

Search indices for an MTable are created on-the-fly
during the first lookup

Note:

MTables

How to work with MTable?

Java Code:

Use com.k2view.fabric.common.mtable package.
For example:

1. Create MTable:
ArrayList<Object[]> rows = new ArrayList<>();
Object[] row1 = new Object[] { "value1","value2" };
Object[] row2 = new Object[] { "value3","value4" };
rows.add(row1);
rows.add(row2);
MTables.create("mtable_name",new String[]{"col1","col2"},rows);

2. Read MTable based on keys:
MTable mtable = MTables.get("mtable_name");
Map<String, Object> keys = new HashMap();
keys.put("lu_name", getLuType().luName);
List<Map<String, Object>> mtResults = mtable.mapsByKey(keys, MTable.Feature.caseInsensitive);

3. Read all records from MTable:
AllRows<Map<String, Object>> mtableRows = MTables.get("mtable_name").allMaps();

MTables

How to work with MTable?

Graphit:

The below syntax returns the first matching MTable row:

mtable('<mtable_name>').mapByKey({'<key>':'<value>'})

The below syntax returns the value of a specific MTable column

mtable('<mtable_name>').mapByKey({'<key>':'<value>'})[col_name]

MTables

MTables Storage Settings

By default, MTables are stored in Fabric memory for fast data lookup.
However, they can be stored in FabricDB under certain conditions:

1. When a joint query between MTable data and LU data is needed.

2. Due to the size of the MTable.

To change MTable storage to FabricDB, modify the

config.ini.[fabricdb].FABRICDB_MTABLE_LIMIT parameter:

• -1: Keep all tables in memory (default).

• 0: Store all tables in FabricDB.

• >1: Any MTable exceeding the specified row limit is stored in FabricDB;

smaller tables remain in memory.

MTables

MTable in FabricDB

MTables that are stored in FabricDB, are kept in mtables.db SQLite DB.

Indexes are created on-the-fly when querying the MTable using the
lookup functionality (actor or mtable package functions).

The MTable can be queried like regular SQLite table.

	Introduction
	Slide 1: Course 8 Globals MTables
	Slide 2: Agenda
	Slide 3: Globals
	Slide 4: Cluster Globals
	Slide 5: Cluster Globals
	Slide 6: Cluster Globals
	Slide 7: Session Globals
	Slide 8: Thread Globals
	Slide 9: Override Cluster Globals
	Slide 10: Override Cluster Globals
	Slide 11: Override Cluster Globals
	Slide 12: Override Cluster Globals
	Slide 13: Override Cluster Globals
	Slide 14: Override Cluster Globals
	Slide 15: Override Cluster Globals
	Slide 16: Override Cluster Globals
	Slide 17: Reset Cluster Global value
	Slide 18: Reset Cluster Global value
	Slide 19: How it works?
	Slide 20: Session Globals Integration in Job Execution
	Slide 21: Using Globals in SQL Statement
	Slide 22: Globals Best Practice
	Slide 23: MTables
	Slide 24: MTables
	Slide 25: MTables
	Slide 26: MTables
	Slide 27: MTables
	Slide 28: MTables
	Slide 29: MTables
	Slide 30: MTables

