
Alpinist

Course 10

Jobs

Agenda
W E L C O M E

• Job Types

• Job commands

• Monitoring jobs

• Session Scope

• Jobs Mechanism
• K2_JOBS table
• Job’s Life Cycle
• Managing Job Execution

• Job Implementation

• Heartbeat

• Jobs & Project deployment

• Jobs Actors

• Jobs Configurations

• JMX Stats

Fabric Jobs

Fabric Jobs is a mechanism for running scripts or executables.

Once configured, Fabric creates asynchronous tasks (running

threads) that execute specific commands, Broadway flows, or Java

code at scheduled dates and times.

Job types:

• Broadway job

• User job

• Process job

• Interface listener job

• Batch job

• Common tables job

• CDC jobs

Job Types

Broadway job

A Broadway flow defined in the Broadway GUI.

Can be executed using the BroadwayJob Actor or the startJob

command.

Job Types

User job

A Java function defined under a specific LU type or in Shared Objects.

The execution of the job is always tied to a specific LU type. If defined in
Shared Objects, it can be executed across all LU types.

User job can be executed using the startJob command or DbCommand
Actor (running the startJob command).

@desc("Test User Job")

@type(UserJob)

@out(name = "", type = String.class, desc = "")

public static String userJob1 (@desc("") int inputParameter) throws Exception {

…

}

}

Job Types

Process job

Runs a script or executable stored on the Fabric server. It can be executed

using the DbCommand Actor or the startJob command

Example execution command:

startjob process NAME='/opt/apps/fabric/workspace/project/echoArg.sh'

UID='processJobtest' ARGS='{"0":"ARG 1 value","1":"ARG 2 value"}';

Job Types

Interface Listener Job

A listener to a storage (e.g., local file system) implemented by creating an Interface and a Broadway

flow with the InterfaceListener Broadway Actor.

Once the flow is executed (only needs to be executed once), a job will start with the following

parameters:

1. Type = INTERFACE_LISTENER

2. Name = The Broadway flow attached to the InterfaceListener

3. UID = The Interface name

*The interface will react only to newly added files

.

If using the FileRead actor in the attached Broadway flow, set the parameters as
external to receive inputs from the Interface Listener

Note:

Job Types

Batch (migrate) job

Created when executing a batch command. A job will start with the following
parameters:

1. Type = BATCH_JOB

2. UID = The batch command

Common Jobs

See more info in Alpinist’s Common course.

COMMONARE_TABLE_SYNC – executes Common table population

COMMONAREA_TABLE_REPLICATE – executed Common data’s replicate
request from another node in the cluster

CDC Job

Will be covered in the CDC course.

Job Commands

• Using the startjob Command
STARTJOB <JOBTYPE> NAME='<name>' [UID='<uid>'] [AFFINITY='<affinity>'] [ARGS='<args>']
[EXEC_INTERVAL='<execInterval>’];

o Example: startjob user_job name='Customer.userJob1' args='{"loopsIterationCount":"2000"}' UID='uid_test';

• Using a Broadway Flow

o DbCommand Actor – Select “fabric” interface and use the startJob command.

o BroadwayJob Actor – Used specifically for Broadway jobs.

• Using Java:

o fabric().fetch("startjob user_job name='Customer.userJob1' args='{\"loopsIterationCount\":\"2000\"}' UID='uid_test’”);

o Example Java Method:

@desc("")
@out(name = "functionResult", type = String.class, desc = "")
public static Db.Row executeUserJob1(@desc("") String param1) throws Exception {
 Db.Row results = fabric().fetch("startjob user_job name='Customer.userJob1’ args='{\"loopsIterationCount\":\"2000\"}’
UID='uid_test'").firstRow();
 return results;
}

How to Start a Job?

Job Commands

STARTJOB <JOBTYPE> NAME='<name>' [UID='<uid>'] [AFFINITY='<affinity>']

[ARGS='<args>'] [EXEC_INTERVAL='<execInterval>’];

• Job Type – Specifies the type of job (e.g., BROADWAY, PROCESS, USER_JOB, etc.).

• UID – A unique identifier for the job. If not provided, Fabric will generate a new UID for each run.

Using a UID ensures that the job cannot be started multiple times simultaneously. Only one instance of a job with

the same UID is allowed.

• Affinity – Restricts the job to run on specific nodes (more info in the Jobs Config section). Default value:

{"Affinity":["ANY"]} – can run on any node.

• Args – A JSON string containing custom parameters for the job.

Example: args='{"first_param":"first_value","second_param":"second_value"}'

Job Parameters

Job Commands

• EXEC_INTERVAL – Defines the job's execution schedule. If not provided, the job runs immediately and only once.

o Timestamp: yyyy-MM-dd HH:mm:ss → Schedules a one-time execution.

o Time Interval: HH:MM:SS → Runs the job at regular intervals.

o Cron Expression: Uses the crontab format for complex scheduling.

Example: 23 0-20/2 03 12 2 → Runs at minute 23, every 2nd hour from 0 to 20, on the 3rd day of the month,

and on Tuesday in December.

Job Parameters

Job Commands

Stop job

• To stop a running job, use the STOPJOB command:

o Stop all jobs of a specific type and name:

STOPJOB <JOBTYPE> NAME='<name>'

Stop all jobs matching the specified name and type.

o Stop a specific job using its UID:

STOPJOB <JOBTYPE> NAME='<name>' UID='<uid>'

Stop only the job that matches the given UID.

• For BW flows, use the stopJob actor.

How to stop a Job?

Job Commands

Kill job

If a job does not respond to the stopJob command (e.g., a long-running
SELECT on a source database that does not respond to an abort
request) , you can forcefully terminate its thread using the kill
command:
kill <node_id> <task_id>;

Use the ps command to identify the node and task ID.

How to stop a Job?

The ps command returns all threads on the current node. Use ps all to list
threads running across the entire cluster.

Note:

Job Commands

Restart Job

Stop and start a non-archived job.

• RESTARTJOB <JOBTYPE> NAME='<name>'

Restarts all matching Jobs with this name and type.

• RESTARTJOB <JOBTYPE> NAME='<name>' UID='<uid>'

Restarts a specific Job matching an UID.

Resume Job

Start a job that is already marked with archived=true

• RESUMEJOB <JOBTYPE> NAME='<name>' UID='<uid>'

Resumes a specific matching Job. This command applies only to an

existing Job.

How to Restart a Job?

Job Commands

To modify job parameters, use the UPDATEJOB command. You can update

the following:

• Affinity – Restrict the job to specific nodes.

• Arguments – Update built-in and custom parameters.

• Execution Interval – Modify job scheduling.

• RESET_END_TIME (for recurring jobs only):

o TRUE – Triggers the next execution immediately.

o FALSE – Keeps the original schedule.

o To convert a cron job into a one-time job, set EXEC_INTERVAL=''.

Command Syntax:

UPDATEJOB <jobType> NAME='<name>' [UID='<uid>']

[AFFINITY='<affinity>'] [ARGS='<args>'] [EXEC_INTERVAL='<execInterval>']

[RESET_END_TIME=true/false]

How to Update a Job?

Jobs Monitoring

Use the JOBSTATUS command to monitor job execution and status.

Command Variants:

1. Retrieve active or past jobs: JOBSTATUS [x days ago]

o If no days are provided, returns all active (non-archived) jobs.

o If days are specified, returns the status of jobs executed in the past X

days, including archived jobs.

2. Retrieve jobs by type: JOBSTATUS <JOBTYPE>

o Returns the status of all jobs matching the specified type.

2. Retrieve a specific job by type, name, and UID: JOBSTATUS <JOBTYPE>

'<NAME>' WITH UID='<UID>'

o Returns the status of the specified job.

How to Monitor Jobs?

Jobs Monitoring

JOBSTATUS Output:

• Type – Job type (e.g., user_job, process, Broadway).

• Name – Job name.

• UID – Unique identifier of the job.

• Status – Current job state.

• Creation Time – When the STARTJOB command was last executed.

• Start Time – Start time of the last run.

• End Time – End time of the last run.

• Affinity – Node restriction, if any.

• Is Archived – Automatically set to True if the job reaches a terminated, failed, or processed state.

• Next Run:

o IN_PROCESS – "Already running."

o WAITING – "Ready to be executed."

o SCHEDULED – Timestamp of the next scheduled execution for recurring jobs.

• Ownership Candidates Num – Number of nodes eligible to execute the job based on affinity

settings.

• Notes – Last recorded error message if the job failed.

• Node – The node currently handling the job.

• Tries – Number of retry attempts in case of failure.

How to Monitor Jobs?

Session Scope

When a job is executed, Fabric automatically includes session scope variables in the
job’s arguments. Any SET command executed within the session is added to the
session_scope parameter of the job.

This means that when a Session Global is set and a job is run within the same
session, the job will inherit these global values and operate accordingly.

For example, executing the following commands:

• SET sync off;

• SET auto_mdb_scope = true;

• SET k2_ws.ALPINIST = 10;

Will result in the following job arguments:

{"session_scope":"{\"scope\":{\"EXECUTION_ID\":\"e03e1922-ccbe-42d1-94ce-
9470412e578d\",\"k2_ws.ALPINIST\":\"10\",\"SYNC\":\"off\",\"AUTO_MDB_SCOPE\"
:\"true\",\"LOG_ID\":\"9404000000001753\"}}"}

* execution_id – Used internally by Fabric along with log_id for log tracing.

Jobs Mechanism

Each STARTJOB command adds a record to the k2System.k2_jobs table:

• TYPE: Specifies the job type (BROADWAY_JOB, USER_JOB,

COMMONAREA_TABLE_SYNC etc.

• NAME: The job name, including the associated LUT.

• UID : The unique identifier for the job

• AFFINITY: The node or DC (IP address) where the job can run on.

• ARCHIVED:

o Automatically set to True when the job reaches a terminated, failed, or

processed state.

o If not specified, the default TTL (Time-to-Live) is used, set in config.ini

(K2JOB_ARCHIVING_TIME_HOUR=720, equivalent to 30 days).

o TTL applies at the row level when the job is archived.

K2_JOBS table

Jobs Mechanism

• ARGUMENTS: Parameters passed to the job, including both session parameters and
custom parameters.

• CREATION_TIME: Timestamp of the last startJob execution.

• EXECUTION_INTERVAL: Defined only for recurring jobs.

• STATUS: Current status of the job.

• Last Run Statistics:

o START_TIME: Timestamp when the job last started.

o END_TIME: Timestamp when the job last completed.

o ERROR_MSG: Error message from the last run, if applicable. (Not cleared even if
a later run is successful?)

o OUTPUT: Stores job output if configured.

• TRIES: Number of retries (in case of failures).

• WORKER_ID: The node handling the job.

Job Execution with UID

If a job is started with a UID that already exists in k2_jobs (in PROCESSED
status), the same record is updated instead of creating a new one.

K2_JOBS table

Jobs Mechanism

Jobs Mechanism
Job Lifecycle - User Action

A user starts a new job using the startJob command.

The startJob command creates a record in k2System.k2_jobs

within the system database, setting the status based on the

Schedule parameter:

• WAITING → If Schedule is Empty, Immediate, or Time

Interval.

• SCHEDULED → If Schedule is Cron or Timestamp.

Jobs Mechanism
Job Lifecycle - JobReconcile

JobReconcile is a Fabric component that manages job

execution and termination. It runs on every Fabric node and

follows the process outlined in the flow diagram on the left.

• When a job is in the SCHEDULED status and claimed by a

node, JobReconcile requests the JobScheduler to monitor it

and transition it to WAITING when the execution time

arrives.

• When a job is ready to run, JobReconcile starts a new

thread of JobExecuter, which handles the job execution.

Jobs Mechanism
Job Lifecycle - JobReconcile

Claiming Job Ownership

A job becomes available for ownership by a node in the following

cases:

1. WAITING – The job is ready for execution.

▪ If tries > 0 (meaning the job has failed), the node must wait 1

minute before reclaiming it. This delay allows resources to be

released and gives other nodes a chance to claim the job. *Tests have

shown that without this 1-minute delay, the failing node would

immediately reclaim it again.

▪ Logs when job is executed:

INFO 2025-01-27 21:55:21,616 [LID570400000000000f]

[JobsReconcile] c.k.c.j.JobsReconcile -

'USER_JOB.Customer.userJob6.uid_test6' is now IN_PROCESS by

dev-fabric-deployment-848b7d9f89-ddm97

Jobs Mechanism
Job Lifecycle - JobReconcile

2. SCHEDULED – The job is set to run at a specific time but

requires an active node to execute it.

3. IN_PROCESS – The job was running, but the assigned

node is no longer available.

To claim ownership, JobReconcile updates its IP in the

worker_id column of the k2_jobs table. Fabric ensures that

only one node can claim ownership at a time by using a

lightweight transaction, preventing conflicts.

Jobs Mechanism
Job Lifecycle - JobReconcile

Example Log Entry for Successful Ownership Claim:

INFO 2025-01-27 20:56:31,218 [LID570400000000000f] [JobsReconcile] c.k.c.j.JobsReconcile -

dev-fabric-deployment-848b7d9f89-ddm97 successfully claimed ownership of cron job

'COMMONAREA_TABLE_SYNC.COMMONAREA_TABLE_SYNC.COMMONAREA_TABLE_SYNC_r

ef_crm.payment’

Note: When a node restarts, its worker ID is not deleted from the k2_jobs table,

giving it precedence over other nodes for executing its assigned jobs.

Jobs pool

Each node maintains a pool of active jobs running on it.

• When a job thread starts, it is added to the jobs pool and removed

once the thread terminates.

• The maximum number of concurrent jobs per node is defined in

config.ini: K2JOBS_POOL_SIZE=25

• If the pool reaches its limit, the node cannot claim new jobs until a slot

becomes available.

Jobs Mechanism
Job Lifecycle – JobScheduler

The JobScheduler is a Fabric component responsible for

tracking a node’s scheduled jobs and moving them to

WAITING when their execution time arrives.

It maintains a queue of scheduled jobs, received from

JobReconcile, for monitoring.

When a job reaches its scheduled time, the following log

entry is recorded:

INFO 2025-01-27 21:55:20,611 [LID5704000000000337] [InternalQueue-

ref_crm.payment] c.k.c.j.JobsScheduler - cron job

'USER_JOB.Customer.userJob6.uid_test6' marked as ready

Jobs Mechanism
Job Lifecycle – jobExecuter

The JobExecuter is a thread initiated by JobReconcile, responsible for
executing jobs and updating their status upon completion.

Once a job completes, the Post Execution method is triggered to handle status
updates:

• STOPPING – If the job was stopped by a user (stopJob command), the
status is updated to TERMINATED.

• RESTART – If the job was restarted (restartJob command) or a deployment
occurred, the status is updated to WAITING, and the Owner is removed.

• Exception Raised – If the job was terminated by a kill command or
encountered an exception:

o If retries are allowed, the status is set to WAITING.

o If no retries remain, the status is set to FAILED.

• Otherwise, the status, IP, and archived flag are updated according to the
workflow to the left.

Jobs Mechanism
Job Lifecycle - Logs

Jobs Mechanism
Managing Job Execution

Stopping a job

Executing the stopJob command updates the job’s record to

STOPPING status.

• JobReconcile detects the STOPPING status while

scanning non-archived records and terminates the job’s

thread.

• During post-execution, JobExecuter updates the job’s

status to TERMINATED and sets archived = true.

Jobs Mechanism
Managing Job Execution

Killing a job’s thread

Fabric’s ps and kill commands can be used to terminate a

job’s thread if the stopJob command fails to stop it (e.g.,

when the job does not handle the abort process correctly).

• In such cases, the thread is forcefully terminated.

• The post_execution method detects the error message

and updates the job status accordingly:

o WAITING – If the restart count has not reached the

threshold.

o FAILED – If the restart count limit has been exceeded.

• The thread is then closed and removed from the job pool.

Jobs Mechanism
Managing Job Execution

Restarting a job

Executing the restartJob command updates the job’s record to
RESTART status.

• JobReconcile detects the RESTART status while scanning
non-archived records, stops the job’s thread, and updates the
status to WAITING.

• A node will then claim ownership and execute the job.

Resuming a job

Executing the resumeJob command updates the job’s record to
WAITING or SCHEDULED (depending on its schedule) and sets
archived = false. A JobReconcile instance will detect the job
and claim ownership to execute it.

Job Implementation

Aborting a Job

Use the built-in function to actively handle the stopJob command
invoked by the user:

if (isAborted()) {
 …Add custom logic as required…
 throw new InterruptedException();
}

• When using BW flows, the Broadway mechanism automatically checks
for abort signals between each stage.

• Explicit handling is typically required when subscribing to Kafka without
using the Subscribe Broadway actor.

Note:

Job Implementation

Job retries

By default, Fabric attempts to execute a failing job 10 times before marking it as FAILED.

To override the retry mechanism, use:

• Java Code:

• failJobRetryUntilMax(Throwable e) – Default behavior (retries until the max limit is reached).

• failJobAlwaysRetry(Throwable e) – Forces the job to retry indefinitely, ignoring the retry

limit.

• failJobNoRetry(Throwable e) – Stops job execution immediately and prevents any retries.

Job Implementation

• Broadway (BW) Flow:

• Use ErrorHandler to catch exceptions and trigger a flow.

• The flow calls a LU function to execute the following:

 import com.k2view.cdbms.jobs.JobExecutor;

Note: The e parameter contains the exception details, which are:

• Logged in the system log file.

• Stored in the k2_jobs.error_msg column.

• Displayed when running the JobStatus command.

Job Implementation

Job output

When a job returns a result, the output is stored in the

k2_jobs.output column.

Note: In Broadway (BW), the output includes all parameters defined

as External.

Example Output:[{"result":"Loop executed 500 times","result2":222}]

Heartbeat
Fabric provides multiple recovery mechanisms to ensure job execution continuity if a node fails. A heartbeat

mechanism monitors each Fabric node, allowing jobs to be reassigned when necessary.

Each node updates its heartbeat in k2system.nodes with the following behavior:

• Every node updates its status in Cassandra every FABRIC_HEARTBEAT_INTERVAL_MS milliseconds

(default: 5 seconds).

• A node is considered inactive if it misses FABRIC_HEARTBEAT_MISS updates (default: 12 misses).

• If a node stops updating its heartbeat, other nodes assume it is down and can claim its jobs. The failing

node will also terminate all its active job threads.

• Any job with affinity set exclusively to a failed node will not run and must be restarted manually.

• If a node restarts shortly before a scheduled job's execution, it takes precedence over other nodes

for running that job. This is achieved by retaining the worker_id in the k2_jobs table before the

restart.

Note:

Jobs & Project Deployment

• The deploy.flow can be used to start jobs

automatically.

• Deploying a project restarts all running jobs associated

with the deployed LUT, ensuring they run with the

updated code.

• Recurring jobs that are not running at the time of

deployment are not restarted.

• Broadway and User jobs restart automatically after

deployment (or a Fabric restart), while Parsers do not.

Jobs Actors

JobWait

The JobWait actor waits for a specific job to complete or until a

timeout occurs.

• Mandatory Input Parameters:

o Job type

o Job name

o UID (The UID can be assigned during the startJob command

and used here.)

• Output:

• Parameters from the k2_jobs record

Jobs Actors

StopJob

The StopJob actor stops a running job and waits until it completes, or a

defined timeout is reached.

• Mandatory Input Parameters:

o Job type

o Job name

o UID (The UID can be assigned during the startJob command and

used here.)

• Output:

o Job status

Jobs Actors

BroadwayJob

BroadwayJob actor provides the ability to trigger a Fabric Job that will in
turn execute another Broadway flow once or multiple times depending
upon the configuration of the job.

Jobs Configuration

Config.ini

JOBS section:.

• K2JOBS_POOL_SIZE=25, defines the size of the thread pool for

processing Fabric Jobs.

• K2JOB_ARCHIVING_TIME_HOUR=720, defines the time when to

delete archived Job row in the k2_jobs table. Default is 720 hours

(30 days).

• CLAIM_EXCEPTIONAL_INTERVAL_SEC=60, defines the wait

interval before claiming a job with limited affinity, once the

recommended pool size has been reached for this affinity (see

next slide).

.

Jobs Configuration

Node.id

The node.id file, located in the config folder, is used to assign logical

names to nodes. These logical names can be used to set affinity for

specific jobs, ensuring that only nodes with the matching affinity can

execute those jobs.

Affinity-Based Job Execution

For example, adding "HANDLE_MSG:5" to the node.id file of Node 1 and

Node 2 allows these two nodes to execute up to 5 instances of jobs with

the HANDLE_MSG affinity.

• Nodes without HANDLE_MSG in node.id or with HANDLE_MSG:0

cannot execute these jobs.

• If more than 10 jobs start simultaneously, each node will execute 5

jobs, while the remaining jobs will stay in WAITING status until a slot

becomes available.

.

Jobs Configuration

Node.id

ANY as affinity

The ANY option is enabled by default for all nodes and applies only to jobs

without a specific affinity.

Configuring ANY Affinity in node.id:

1. Exclude a Node: Set ANY:0 to prevent a node from executing jobs without

affinity.

2. Limit Job Execution: Set ANY:<value> to define the maximum number of

jobs a node can run concurrently.

3. Default Behavior: If ANY is not specified in node.id, the node will

automatically execute jobs without a specific affinity.

Jobs Configuration

Node.id

Affinity range (Fabric 6.4.2 and later):

Fabric allows defining an affinity range in node.id, e.g.,HANDLE_MSG:5 10

• 5 → Recommended maximum number of concurrent jobs.
• 10 → Absolute maximum number of concurrent jobs.

Defining a range can be used to cover of a dead node. How It Works:

• Nodes will prioritize staying within the recommended limit to allow other nodes to take jobs.
• If a node has reached its recommended limit but still tries to claim a new job, it must wait for a specific time

before taking on additional jobs.

 Claim Delay:

• This waiting time is controlled by the CLAIM_EXCEPTIONAL_INTERVAL_SEC parameter in config.ini (default: 60
seconds).

• During this time, other nodes with available slots get the first opportunity to claim jobs.

Jobs Configuration

Node.id – Affinity Range

Handling Excess Jobs

If a node exceeds its recommended pool size, Fabric will:

1. Stop & Release extra jobs running beyond the recommended limit.

2. Allow Other Nodes with available slots to claim the stopped jobs.

To avoid immediate job restarts on the same node, a random delay is applied before restarting the job. This
delay is controlled by:

• MIN_GIVE_UP_EXCEPTIONAL_MINUTES

• MAX_GIVE_UP_EXCEPTIONAL_MINUTES

These parameters can be configured in config.ini under the jobs section.

It is recommended to set the minimum affinity value to match the required number of job
instances. Otherwise, jobs may continuously restart.Important Note:

Jobs Configuration

Node.id – Affinity Range

• Set the minimum affinity value to match the required number of job instances; otherwise,

jobs may continuously restart.

• This is especially critical for jobs consuming from Kafka, as each restart triggers a rebalance,

temporarily halting consumption and reducing the overall consumption rate.

Important Notes:

JMX Stats

Under the Transactions section:

• systemJobs – Displays the number of currently running jobs (total 0 indicates the job is not running).

• systemJobsExecution – Shows the total number of times the job has been executed.

	Introduction
	Slide 1: Course 10 Jobs
	Slide 2: Agenda
	Slide 3: Fabric Jobs
	Slide 4: Job Types
	Slide 5: Job Types
	Slide 6: Job Types
	Slide 7: Job Types
	Slide 8: Job Types
	Slide 9: Job Commands
	Slide 10: Job Commands
	Slide 11: Job Commands
	Slide 12: Job Commands
	Slide 13: Job Commands
	Slide 14: Job Commands
	Slide 15: Job Commands
	Slide 16: Jobs Monitoring
	Slide 17: Jobs Monitoring
	Slide 18: Session Scope
	Slide 19: Jobs Mechanism
	Slide 20: Jobs Mechanism
	Slide 21: Jobs Mechanism
	Slide 22: Jobs Mechanism
	Slide 23: Jobs Mechanism
	Slide 24: Jobs Mechanism
	Slide 25: Jobs Mechanism
	Slide 26: Jobs Mechanism
	Slide 27: Jobs Mechanism
	Slide 28: Jobs Mechanism
	Slide 29: Jobs Mechanism
	Slide 30: Jobs Mechanism
	Slide 31: Jobs Mechanism
	Slide 32: Jobs Mechanism
	Slide 33: Job Implementation
	Slide 34: Job Implementation
	Slide 35: Job Implementation
	Slide 36: Job Implementation
	Slide 37: Heartbeat
	Slide 38: Jobs & Project Deployment
	Slide 39: Jobs Actors
	Slide 40: Jobs Actors
	Slide 41: Jobs Actors
	Slide 42: Jobs Configuration
	Slide 43: Jobs Configuration
	Slide 44: Jobs Configuration
	Slide 45: Jobs Configuration
	Slide 46: Jobs Configuration
	Slide 47: Jobs Configuration
	Slide 48: JMX Stats

