
Alpinist

LUI sync components -
part 1

Agenda
W E L C O M E

• What happens when we execute GET?

• LU Storage

• System database

• Compression

• Vacuum

• LUI version

• Cache

• Transaction

• Sync timeout

What is an LUI?

1. LUI is an SQLite database file.

2. Each LUI contains all the tables defined on the source side.

3. Although each LUI contains all the tables, the data inside

each LUI is relevant only for a single instance (e.g.,

Customer).

4. If we have 1 million customers on the source system, we will

have 1 million LUI files in Fabric.

5. All the files are stored in Fabric storage (Cassandra is the

default).

6. Each GET command is fetching the requested LUI from the

storage to the memory and attach the SQLite to our session.

Source system (Oracle/Postgres/DB2...)

MicroDB (SQLite file)
Customer.1

MicroDB (SQLite file)
Customer.2

MicroDB (SQLite file)
Customer.1000000

Kept in a storage

What happens when we execute a GET command?

1. Validate user permissions for the LUI.

2. Check for any attached MDBs in the session that cannot be
released due to an ongoing transaction (within the same LU
type). If found, raise an error: "Attached LU cannot be
detached while in transaction."

3. Extract the SQLite from storage. If not found - start from
empty db.

4. Decrypt the file if encryption is applied.

5. Decompress the file.

6. Compare the schema to the LU type definition for any
necessary upgrades and implement the schema changes
accordingly. If the LUI is new - create the schema.

7. Attach the SQLite file and lock it for write.
If another GET operation is underway for the same instance,
on the same node, the current thread will wait up-
to MDB_ATTACH_TIMEOUT ms.

8. If timeout exceeds - throw an error.

9. Begin syncing the LUI by executing table populations.

1. Execute all populations and enrichment functions. Each

population establishes connections to its source DB as

required (utilizing the connection pool).

2. Update k2_objects_info after each population.

3. If LUT sync timeout exceed – throw exception

4. Commit changes to the SQLite.

10. Apply compression.

11. Encrypt if needed.

12. Save the SQLite back into the storage.

13. Perform a resource cleanup.

Note: Detach occurs only upon execution of a Release

command or when a new instance ID (from the same

LU type) needs to be attached.

Get Customer.123:

LUI Storage

The location where to storage the SQLite files (MDBs)

LUI Storage

Options:

• Default – as defined in MDB_DEFAULT_SCHEMA_CACHE_STORAGE_TYPE

• SYSTEM_DB - [system_db]

• AWS S3 storage - [s3_storage]

• Azure blob storage - [azure_blob_storage]

• GCS – Google Cloud Storage - [gcs_storage]

• NFS – shared storage.
Add Config.ini.[fabricdb].
MDB_DEFAULT_STORAGE_PATH

• None – LUIs are not stored

• Cassandra - [default_session]

• S3 - [s3_storage]

• Azure blob storage - [azure_blob_storage]

• GCS - [gcs_storage]

• None – LUIs are not stored

LUI Storage

Using cloud storage for LUIs is preferable over
Cassandra due to several reasons:

• Frequent upserts of the LUI in Cassandra can
lead to a high load due to the frequent creation
of SSTables, which in turn requires constant
compaction processes to run

• Big LUIs are stored in chunks due to Cassandra
limitation, resulting in slower saving and fetching
compared to cloud storage, which remains
unaffected by blob size.

However, it's important to note that cloud storage
incurs higher costs compared to Cassandra.

LUI Storage - Cassandra

Entity table

• When the LU storage is set to Cassandra, the LUIs
are stored, as a BLOB (Binary Large Object), in a
table named “Entity” within the
k2view_[LU_name] keyspace.

Entity table:

• Id = iid

• Batch_id – see Big LUIs section

• Chunks_count - see Big LUIs section

• Data – BLOB of the LUI SQLite file

• Key_desc_id - see Big LUIs section

• Schema_hash – Schema metadata hash.
Used to identify schema change

• Sync_version – the version of the LUI

• To count the number of instances, use
Cassandra COPY command.

• In case resync is needed for the entire
population, do not use ‘select id from
entity’ for the batch command. That will
bring the IIDs by partitions and therefore
the load on the cluster will not be
distributed.
Instead – use the ‘reverse migration’ logic

• 'batch LU from fabric
fabric_command="sync_instance LU.?"
with ASYNC=true' comman is
running 'select id from entity'

Entity table best practice:

Operational database for Fabric (cluster info, job mechanism, permissions…)

Options:

• NoSQL distributed database, such as Cassandra DB

• Relational database, such as PostgreSQL

• SQLite - development and single-node environments.

SYSTEM_DB

Pros:

• Consistency

• Compliance with services such as Cloud Spanner,
AlloyDB.

• Easy to maintain.

Cons:

• Single point of failure

• Not supported by the iidFinder solution.

SYSTEM_DB

Pros:

• Scalable

• Distributed

• Built-in TTL mechanism on row level.

• If Cassandra is used as a MicroDB storage, there is no
need to introduce additional DBs.

• Managed services (such as AWS Keyspaces or Astra)
are supported.

• Supported by the iidFinder solution.

• Built-in mechanism for managing parallel threads
during a bulk instance loading.

Cons:

• Consistency
Maintaining strong consistency often involves additional
synchronization mechanisms, which can lead to slower reads and
writes

• Not easy to operate and maintain.

NoSQL distributed database Relational database

1. On GET, Fabric first checks (i.e., reads)
STORAGE_TRANSITION_TO for data. If Fabric
cannot find data there, it then reads
STORAGE_TRANSITION_FROM for data.

2. On save, Fabric saves data in
STORAGE_TRANSITION_TO.
If the LUI was found in
STORAGE_TRANSITION_FROM Fabric deletes the
data that was found in
STORAGE_TRANSITION_FROM.

If STORAGE_TRANSITION_FROM is set to blank, the
system will stop reading
STORAGE_TRANSITION_FROM (no need for a
restart).

Move LUIs to a New Storage

To move LUIs between storages, use the following
config.ini [fabricdb] settings:

• MDB_DEFAULT_SCHEMA_CACHE_STORAGE_TYPE=
TRANSITION

• STORAGE_TRANSITION_FROM=CASSANDRA (the
old DB)

• STORAGE_TRANSITION_TO=S3 (the new DB)

Transfer LUIs to a new storage LUIs transfer process:

LUI Compression

Before storing the LUI in the storage, Fabric

compress the MDB file, to occupy a smaller space

and have faster save/extract.

The compression can be changed in

config.ini.[fabricdb].MDB_DEFAULT_STORAGE_CO

MPRESSION

Options:

• LZ4 (default)

• GZIP

• NONE (no compression).

• GZIP – result Is 25% of the original

file.

• LZ4 have better compression but is a

bit slower.

Best practice:

LUI Vacuum

As an SQLite database, the below scenarios may
occur in the LUIs:

• When content is deleted, it is not usually erased
but rather the space used to hold the content is
marked as available for reuse.

When a large amount of data is deleted the
database file might be larger than strictly
necessary.

• Frequent inserts, updates, and deletes can cause
the database file to become fragmented.

Running VACUUM reduces the size of the database
file:

• Reclaims the “free” space

• Fix the fragmentations

Usually there is no need to enforce

vacuum.

In case of an issue, and after consulting

with R&D, you can force reclaim free

space before storing the mdb using

config.ini.[fabricdb].

MDB_VACUUM_THRESHOLD_KB: -1 is

off, 0 always, >0 setting size threshold

Best practice:

LUI Version

Each time the LUI is saved back to the storage, it is
assigned with a new version number.
The version number is constructed from the
timestamp when the file is saved back

• When the storage is Cassandra, the version is
kept in the Entity table.

• When it is stored in cloud, it is kept as property
of the file (tag)

The version is used by Fabric in the below cases:

1. Validate LUI override

2. Validate cache is up to date

LUI Cache

To optimize the LUI retrieval process, Fabric uses a cache mechanism, which enables a
faster loading of an instance into the memory.

The cache location is defined in the Cache Location property of the LUI Schema.

• MDB files will be stored in
${FABRIC_STORAGE}/storage/fdb_cache/ .
If this location does not exist, store the cache
in ${FABRIC_HOME}/storage/fdb_cache/.

LUI Cache

• As configured in config.ini.[fabricdb].
MDB_DEFAULT_CACHE_PATH

• Default is /dev/shm/fdb_cache.
If this path does not exist,
${FABRIC_HOME}/storage/fdb_cache/ will be
used.

• Under the default path, a folder is created per
each LUT.

• The /dev/shm directory is a special directory on
Linux systems that is used for storing temporary
files.
The files in /dev/shm are stored in memory, rather
than on disk, which makes them much faster to
access (disk is mounted directly to the Memory)

1. Default 2. Storage

Cache location property l Available options:

Changing the default path in
config.ini will result in ignoring
this setting for all the LUTs.

Note:

LUI Cache

Fabric usage of the LUI cache

1. User 1 execute GET Customer.215 on node 1

2. Fabric is fetching the LUI (MDB) from Storage

3. Fabric save the MDB file on node 1 cache directory

4. User 1 can query the LUI

5. User 2 execute GET Customer.215 on node 1

6. Fabric is keeping a map in the memory to hold the list of
instances IIDs that their MDB files are currently cached. The
map also contains the LUI version and the Schema Hash

7. Prior to utilizing the cached file, Fabric validates whether it
is the most recent version by querying the storage for MDB
with the same IID but with version that is greater than
cached one. If MDB is found – the cached file will be
replaced
with the newer version.

8. If up-to-date, user 2 can query the file

1. Always prioritize using the default
path (/dev/shm) to optimize
performance.

2. For very large LUIs that exceed the
cache size, consider configuring the
cache to utilize another disk space.

LUI cache best practice:

41
5

7

2 3

6

LUI Cache

Cache storage size

• The catch storage size is restricted and is set per LUT
in config.ini.[fabricdb].
MDB_DEFAULT_SCHEMA_CACHE_SIZE.

• Once the cache storage reaches the specified size:

• Inactive files are removed from the cache by LRU
(Least Recently Used) order.

• If the size of the LUI file exceeds the remaining space
it will be retained in the cache, potentially exceeding
the maximum size defined, but it will not be stored in
the directory once detached.

• If the file size exceeds the total memory, Fabric will
crash.

• The cache is stateless - cached
files are deleted upon Fabric
restart.

• The cache is utilized best when
the same LUI is accessed
multiple times within a short
period. Otherwise, it is possible
for the file to be removed from
the cache due to other files
utilizing it.

Note:

LUI transaction

The Sync process is managed as a single transaction that starts at the
beginning of the Sync process and finishes at its end.

• If the Sync is completed successfully, the data is committed to the
Fabric database.

• If an error occurs at any point during the Sync process, the
transaction is rolled back.

The sync transaction can be managed from outside the sync process,
when opening it by the calling session:

Db ci = db("fabric");
ci.beginTransaction();
ci.execute("get Customer.'" + IID + "'");
String SQL = "INSERT into CONTRACT_COPY
(CUSTOMER_ID,CONTRACT_ID,CONTRACT_REF_ID) values (?, ?, ?)";
Object[] params = new Object[]{IID, contrID, contrRefID};
ci.execute(SQL, params);
ci.execute("commit");

There is no difference between db("fabric") and fabric()

Note:

LUI transaction

LUI transaction

In case the source system cannot be accessed, you

may prefer to roll back the Sync without getting an
error (exception).

In that case, use the ignore_source_exception
command set to ‘true’ on the session level.

If the instance is not yet in Fabric,
the GET command will throw an
exception.

Note:

LUI sync timeout

Timeout for the Sync process

LUI sync timeout

By default, LUI sync time is not limited by time. Nevertheless, it is recommended to limit
the sync time to avoid bottlenecks and stuck instances.

If a timeout is set and the sync exceeds the predefined timeout, Fabric rollbacks the
changes and throws the following exception: Timeout occurred.

A sync timeout can be defined either on the LUT level or per session:

• LUT Schema level – set the timeout for all the instances of the LUT.

• Session level – override the LUT setting on a session level, using “set sync_timeout”
command.

 LUI sync timeout

• Always set the timeout on the LUT schema level.

• For instances that exceed the timeout, it is recommended to have a
retry process (log the failure and create a retry process).
The retry process can dynamically adjust the sync timeout at the
session level using the set sync_timeout command.

Note: when creating a different process, consider the limitations
described in the Parallel GETs section.

Design best practice:

	Slide 1: LUI sync components - part 1
	Slide 2: Agenda
	Slide 3: What is an LUI?
	Slide 4: What happens when we execute a GET command?
	Slide 5: LUI Storage
	Slide 6: LUI Storage
	Slide 7: LUI Storage
	Slide 8: LUI Storage - Cassandra
	Slide 9: SYSTEM_DB
	Slide 10: SYSTEM_DB
	Slide 11: Move LUIs to a New Storage
	Slide 12: LUI Compression
	Slide 13: LUI Vacuum
	Slide 14: LUI Version
	Slide 15: LUI Cache
	Slide 16: LUI Cache
	Slide 17: LUI Cache
	Slide 18: LUI Cache
	Slide 19: LUI transaction
	Slide 20: LUI transaction
	Slide 21: LUI sync timeout
	Slide 22: LUI sync timeout
	Slide 23: LUI sync timeout

