
Alpinist

LU Table population



Agenda
W E L C O M E

• Introduction to Populations

• Properties of Populations
• Sync Methods

• Table Population Mode
• Truncate before Sync/Delete Mode

• Population Types

• Populations – Behind the Scenes
• How is the SELECT Statement Constructed on the 

Source?
• Opening Connection to Source

• Parallel Populations

• Sync on Demand

• Data Pulling Best Practice
• LU Schema structure

• Populations

• Source Interface
• Query Optimization



What is population?

Population defines the source table from which to extract data into 

the LUI and, if necessary, can incorporate data transformation logic.

Population properties:

• Sync Methos – define when the population should run

• Population Mode – define the logic to apply the data (records) in 

the LU table

• Delete Mode – define the logic to delete the records from the LU 

table

On cloud version the Sync Method moved 
to the table level and applies for all the 
populations defined for this table.

Note:



Sync Methods

• Sync Method

• None: Only runs on first sync or with Sync FORCE

• Time Interval: Runs after a set duration since last run

• Decision Function: Runs if the function returns true

• Inherited: Adopts table or schema sync methods

• Important Notes

• Methods apply only when Sync is ON

• Sync OFF means populations will not run

• Sync FORCE overrides methods, except for decision function

• First sync acts like Sync FORCE

• Populations follow their methods, independent of parent table status (if it ran or not)

Set WHEN a population should run



Population Mode

Population Mode Description

Insert Each record extracted from the source is inserted into the LU table using the INSERT operation.

Upsert Executing INSERT ON CONFLICT(PK) UPDATE operation: if a record extracted from the source does not exist in 
the LU table (based on primary key values), insert is performed. Otherwise, the record is updated.

Older versions used INSERT OR REPLACE which invoked delete & insert, and therefore sent 2 CDC messages

Update Update records that are fetched from source.
Used to update a specific columns (for example – calculated column). 
The population is then connected only to the relevant columns.

Delete All records will be deleted from the LU table.
For example – delete records from Target DB in TDM system 

Logic to apply on the newly fetched data



Population Mode
Logic to apply on the newly fetched data

• It is recommended to set up ‘Insert’ mode on the 1st population, followed by 
Upsert for the next populations

• When using ‘Update’ mode, make sure the tables’ key fields are being marked. 
Otherwise, all records will be updated on each iteration. As a result, all records 
will be updated with the last iteration. 
Same for Delete mode

Note:



• All (=true) – truncate the table before the population 
is executed

• Off (=false) – Records are not deleted from the table

• NonUpdated – delete only records that no longer 
exist in the source

Truncate before sync/Delete Mode

• True – truncate the table before the population is 
executed

• False – Records are not deleted from the table

Truncate Before Sync (before 6.5.9) Delete Mode (6.5.9 and up)

Policy to delete existing records prior to executing the population

The table will be truncated only if at least one 
population is executed

Note:



Truncate before sync/Delete Mode

NonUpdated Delete Mode was added to support CDC functionality:

1. Before the population is executed, Fabric creates a temporary table with the PK values.

2. Population is executed – data is fetched from the source and applied to the table.

3. Delete records – only records whose PK is not in the temporary table are deleted.

4. The temporary table is deleted.

NonUpdated Delete Mode

To use NonUpdated option:

• PK fields must be defined on the table 

• The population mode must be either Upsert 
or Update 

Note:



Truncate before sync/Delete Mode

The Delete Mode property exists in both population and table level. 

• When set on the table level, the table will be truncated prior to executing any of the table’s 
populations. 

• When set on the population level (to a value other than OFF), the delete functionality will be 
triggered only if and when the population is executed, and it is operating on the entire table’s 
records. 

NOTE: 

• The ‘Truncate’ setting on the population level truncates the entire table (for example, even if it was 
set on the 3rd population). 

• The table will be truncated only if at least 
one population is executed,

LU Table and Table population

Truncate a table in case the population extracts all data for a given instance.
Otherwise (population extracts delta from the source), do not truncate the 
table.

Best practice:



Population types
Differences between DB query, Root query and Broadway population

Category DB Query Root function Broadway flow

Content SQL statement Java function

Data filter WHERE statement is added automatically No automatic filtering WHERE statement is added 
automatically

Population Execution 
times

One time Executed for every distinct 
parent link value

One time

Times fetching data 
from source

Population is getting distinct values.
Each SQL query statement is using 
MAX_SOURCE_QUERIES_GROUPING 
number of distinct values (Fabric keeps 
prepared statement), until all distinct 
values are used. The remaining distinct 
values will be used in one query (also as 
prepared statement)

Custom implementation Group values to a single query 
according to the 
sourceDbQuery.size parameter 
(same concept as in DB query).



Population types

Root function population is executed for each distinct value of the parent table linking 

values.

If the root function is not using the INPUT fields (the distinct parent values) as part of its 

logic and therefore should not be executed more than one time, consider the below:

• Connect the table to the LU root table to have it running one time only.

• If connecting the population to the root table cannot be done due to other logical 

constraints (for example a delete orphans functionality), a thread global should be used 

to make sure this population is executed only once.

Root population



Populations – behind the scenes

Each population is using the SourceDbQuery Actor that builds the SELECT statement to 

run on source, ensuring that only records belong to this instance are retrieved:

• Receives 'parent_rows’ input parameter, holding distinct values of the parent linking fields

• Add WHERE statement with the distinct values

How is the SELECT Statement Constructed on the Source?

Select * from case_note where case_id in (548,549)



Populations – behind the scenes

The number of values included in the IN statement depends on the Size parameter 

of the SourceDbQuery actor. By default, the Size is set to 100. 

Where linkField1 in (?, ?, ?, ?,…. ?)

If more than a single field is used in the link to the parent, logical OR used for 

multiple record linkage:

Where (linkField1=? And linkField2=?) or (linkField1=? And linkField2=?) or 

(linkField1=? And linkField2=?)…

How is the SELECT Statement Constructed on the Source?



Populations – behind the scenes

DB Interface Pool

Every population establishes a connection to the source system via the 
DB Interface. 

To optimize performance, each node maintains a pool of open connections
for each DB interface.

• The default pool size is defined in 
config.ini.[fabric].MAX_CONNECTIONS_TO_SOURCE. 
The definition is per node.

• You can override this value using the DB Interface properties in the studio:

• Min Connection Pool: number of connections kept open, 
even if not in use.
Note: the minimum connections are opened only upon first 
request, and not automatically on Fabric start.

• Max Connection Pool - max number of connections allowed 
to source system.

Opening Connection to Source



Populations – behind the scenes

Population Use of the DB Interface Pool 

• When the GET command is executed, populations within the LUIs are executed sequentially according to a 

predefined order. 

• Each population is associated with a particular DB Interface. 

• The population requests a connection from the connection pool:

• If an available connection exists, it will be utilized.

• If there are no available connections but the pool isn't at capacity, a new connection is opened.

• If the pool is at capacity, the process waits until a connection becomes available. 

Timeout to wait on connection is hard coded 30 seconds.

• Idle connection will be removed from the pool after 60 seconds. 

The time can be configured though the driver parameters.

Opening Connection to Source



Populations – behind the scenes

• Every connection is returned to the pool after each use (either db(...) or any BW DB actor). 

If two populations are using the same DB interface, each one will request its own connection from the pool 

and return it once done (most likely the second population will get the same connection instance as the 

first one).

• This can be controlled by a parameter in the config 'ENABLE_SELF_CLOSE_CONNECTION'.

JMX Stats:

1. jdbcActiveSessions

2. dbcIdleSessions - idle connections in the pool

3. JdbcMaxSessions – max connections as configured for the pool

Note: No available way to check waiting on the pool

Opening Connection to Source



Parallel Populations

By default, the populations with the same execution order are running sequentially.

To improve the LUI sync time, Fabric supports parallel syncs of multiple populations within the same execution 
order.

Use config.ini. [fabric] .MAX_PARALLEL_SYNC_SAME_ORDER (default value = 1) to set the desired number of 
parallel populations execution.

Allowing more than a single population to 
run in parallel means consuming more 
resources by a single LUI sync, which may 
therefore block other LUIs that are syncing 
in parallel.

Parallel population best practice:

Populations – behind the scenes
Opening Connection to Source

Note:

• Although the populations are fetching the data in parallel, the data 

write to the LUI remains sequential.

• When two populations are running in parallel, they will use the 

connection in turns, giving each other time to read on write.

• The capability to share the same connection relies on the JDBC driver's 

support for multithreading & multiplex.



The purpose of Sync On Demand mode is to reduce Fabric's LUI sync time by only synchronizing relevant data.

Sync On Demand logic:

• Executing the GET command does not trigger instance synchronization (like SYNC OFF mode).

• If the instance doesn't exist in Fabric, a full sync is performed.

• When executing SELECT statements on LU tables, an evaluation determines if a sync is needed.

• This evaluation applies only to the LU tables in the SELECT statement and their parent tables up to the Root table.

• Synchronization follows the standard Sync mechanism rules based on LU's predefined sync method and mode.

Sync On Demand can run in two modes:

• True: Each table can be synchronized only once per GET, even if multiple SELECT statements are executed 

and the source table changes.

• Always: Each table can be synchronized on each SELECT, assuming the sync conditions are met..

Sync on Demand



To set Sync On Demand mode:

• Set the SYNC_ON_DEMAND parameter in the config.ini file to True (default is False).

• Run the SET SYNC_ON_DEMAND = [TRUE/FALSE/ALWAYS] command to set it at the session level.

NOTE:

The implementor should manage transactions efficiently. When a Web Service or GraphIt invokes multiple SELECT 
statements on the same LU, it is the implementor's responsibility to minimize writes to the MDB Storage.

For example - several SELECTs in a Web Service or GraphIt:

1. Set Sync On Demand to either true or always, whatever is required.

2. Perform GET LUI.

3. Begin the transaction.

4. Perform all the required SELECT statements:

5. On each SELECT, Fabric checks whether sync should be performed (based on sync mode and sync method). If it 
should, the relevant tables are synchronized - as per the above logic.

6. Commit the transaction.

Sync on Demand



Data Pulling Best Practice

1. Minimize LU Table Columns – include only columns that are needed

• Reduces fetch and data transmission over the network

• Decreases LUI size for faster db operations

2. Connect parent-child tables using the minimum required fields to have a better performant query statement.

3. A table should always be connected to the parent that will minimize the number of times that the population will go to source.

 

4. Avoid creating indexes on tables before conducting performance testing. Indexes are typically necessary for very large datasets 
and can potentially slow down Data Manipulation Language (DML) commands.

LU Schema Structure

For example:

Activity table contains customer_id, activity_id.

Activity_history table contains customer_id, activity_id, history_id.

We can link these tables using both customer_id and activity_id. 

However, if we require all customer’s records in the activity_history table, it is sufficient to connect the 2 tables using 

only the customer_id field.

For example:

connect a table to Account (using account_id) instead on connecting it to Subscriber table (using subscriber_id), as 

anyway all the subscribers belong to the same account.



Data Pulling Best Practice

5. Always consider the order in which the table is populated. 

6. Mark the Key fields of each table and set them as a unique index. 

LU Schema Structure



Data Pulling Best Practice

1.Ensure that there is an index on the source side that corresponds to the WHERE statement executed by the 

population. 

2.Ensure that linking fields are of the same type in order to prevent the source from converting them during 

fetch operations. For instance, if a parent field of type String is linked to a child table field of type int, 

certain database types may result in failure, while others may convert the String to Int, potentially slowing 

down the fetch performance. 

3.Fetch from source only the records that are needed. 

For example, if accounts that are closed are not required, do not fetch ‘closed’ accounts. 

4. If a population is accessing the source system many times (i.e., the distinct values of the parent tables 

exceed the Size parameter), consider changing the Size parameter to reduce the number or roundtrips. 

However, increasing it excessively may exhaust the network bandwidth and potentially cause blockages for 

other processes requiring it. 

Populations 



Data Pulling Best Practice

1. Make sure the DB Interface connection pool is sized as required, in order not to wait for connection to source when 

running multiple sync processes at the same time. 

Source Interface



Table Population Best Practice

1. Creating Relevant Indexes

• Create indexes based on your query requirements to improve SELECT statement performance.

• Note: While indexes enhance SELECT performance, they can slow down INSERT, UPDATE, and DELETE operations. Use EXPLAIN QUERY PLAN
to validate the utilization of the correct indexes.

2. Avoiding Index Manipulation in Queries

• Avoid applying additional manipulation or transformation on index fields within queries, as this can prevent the index from being used. 
Example: Concatenating two fields in a WHERE clause will not utilize the index on those fields.

3. Enforcing Index Utilization

• If necessary, enforce index utilization in the query using INDEXED BY.

• If parsing fails, use /* sqlite */ or /* k2_no_parse */ before the SELECT statement, depending on the Fabric version.

4. Simplifying Queries

• Simplify queries to achieve better performance and readability.

• Avoid excessive use of the JOIN operator in a single query; consider splitting complex queries into simpler ones.

5. Optimizing UNION Operator Usage

• Limit the use of the UNION operator and prefer UNION ALL when the data retrieved by sub-queries is unique. This eliminates the need for an 
additional DISTINCT step, enhancing performance.

6. Validating Record Existence

• To validate that a record exists, select the first row with the required WHERE condition using LIMIT 1 or ROWNUM < 2, depending on the 
database.

• Avoid using COUNT(*) in queries, as it can be time-consuming and impact performance.

Query Optimization


	Introduction
	Slide 1: LU Table population
	Slide 2: Agenda
	Slide 3: What is population?
	Slide 4: Sync Methods
	Slide 5: Population Mode
	Slide 6: Population Mode
	Slide 7: Truncate before sync/Delete Mode
	Slide 8: Truncate before sync/Delete Mode
	Slide 9: Truncate before sync/Delete Mode
	Slide 10: Population types
	Slide 11: Population types
	Slide 12: Populations – behind the scenes
	Slide 13: Populations – behind the scenes
	Slide 14: Populations – behind the scenes
	Slide 15: Populations – behind the scenes
	Slide 16: Populations – behind the scenes
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Data Pulling Best Practice
	Slide 21: Data Pulling Best Practice
	Slide 22: Data Pulling Best Practice
	Slide 23: Data Pulling Best Practice
	Slide 24: Table Population Best Practice


