
Alpinist

Non-source Schema
tables & MDB JMX Stats

Agenda
W E L C O M E

• Business Tables

• LU Product Tables

• Additional Table Properties

• Full-Text Search (FTS)

• Reference List

• Columns Collation

• MDB JMX Stats

Business tables

Business tables are independent LU tables that do not have a direct or
indirect connection to the LU Root table.
These tables enable users to compute, transform, and store new data
within the LU.

Use Cases:

• Pre-prepare API Responses: Store an API response in advance when data
changes occur in the LUI, ensuring it is ready when needed.

• Execute Complex Processes: Run complex/long processes ahead of time,
making results immediately available when required.

To optimizes performance and efficiency:

• Business table’s population (if exists) should run only when the source tables are
updated.

• Use a decision function to determine whether the population should be executed or
not.

Best practice:

Business tables

Note:
When creating a population for a business table without a parent, the
SourceDBQuery Actor should be replaced with the DbCommand Actor, and
it should not be linked to the PopulationArgs Actor.

LU Built-in Tables
_k2_object_info

Column Description

table_name The LU table name

object_name Name of population/enrichment function

type 6=population, 10=enrichment function

verified_time Last time of verification as to whether the object should be synced or not (according to the sync policy).
Will not be updated if the population was not executed

Start_sync_time Last run start time

End_sync_time Last run end time

Start_write_time Last run start write time (to the Sqlite file)

last_write_time Last run end write time (to the Sqlite file)

number_of_records Number of processed records

time_to_populate_in_sec Total time in seconds to run the object

next_time_to_populate_object Next time the object should be synced.
Calculated based on the sync policy, starting from the beginning of the current object sync.

LU Built-in Tables
_k2_object_info

Column Description

version Version of the object's last deployed schema

sync_error The sync_error is populated in case of a sync raised an error that didn't cause a rollback.

For example, if you start the transaction and then perform a GET command which fails - the sync_error will be
populated until the transaction is closed.

1. Use this table to investigate LU functionality and sync performance
2. Populations not using sourceDbQuery, like business tables, won't update the number_of_records field.

Use the PopulationCount actor to enable this functionality

Note

LU Built-in Tables
_k2_main_info

Column Description

lu_name Each record extracted from the source is inserted into the LU table using the INSERT operation.

version Version of the last deploy which impacted the LU Schema.

Instance_id LU IID

Version_timestamp The timestamp of the last LU schema deployment. This field is retained for backward compatibility but is no
longer in use.

Always use the LUT name when selecting
from the built-in tables

Note:

LU Built-in Tables
_k2_transactions_info

Column Description

id Transaction id

ts timestamp

• Doesn’t exist in Fabric 7.2 and up

• Used to hold the fabric transaction id for the CDC

• This table does not have a cleanup mechanism. It's important to review it in projects using CDC and implement logic for
deletion as needed.

1. k2_read_pos
o Not in use. Will be removed in Fabric 8.1

2. K2_delta_error
o Used by iidfinder partitioned delta mode.
o Holds information on errors, including when each error occurred.

Note

Note

Table Properties

The COLLATE operator in SQLite defines how string values are compared when using a WHERE clause in queries.

SQLite provides several collation functions to tailor string comparisons:

• BINARY – Fabric’s default. Providing case-sensitive comparisons based on ASCII values.

• NOCASE - enables case-insensitive comparison.

For example:
Select TYPE from tblExample where NAME = ‘value’
This query will return records when the NAME field is set to either ‘VALUE’ or ‘value or ‘Value’.

• RTRIM removes trailing spaces before performing the comparison..

For example:
Select TYPE from tblExample where the NAME = ‘value’
This query will return records that match both ‘value’ and ‘value ‘.

Columns Collation

When modifying this property, if LUIs already
exist in Fabric, you must first delete them, deploy
the changes, and then resync.
Alternatively, in a development environment, you
can drop the LUT before deploying.

Note:

Table Properties

The References List property displays all Reference tables defined in the project.

A Reference table should be checked only if:

• It is needed as a lookup function in one of the populations.

• LUIs should not be synced if the Reference table has not completed its first sync.

Reference List

• A Reference table can be accessed from code (e.g.,
function) also when the table is not checked.

• It is recommended to limit the number of checked
Reference tables to avoid a massive sync of the
Reference tables when synchronizing an LU instance

Note:

To select from Reference use ludb.fetch or fabric.fetch, instead
of FabricDB.fetch (fabric local interface defined in the
implementation) as this drastically impacts the performance
(fabriclocal/fabricremote is over TCP).

Best practice:

Table Properties

Considerations for Using FTS:

• Full-text search is most advantageous when dealing with large volumes of text data that need frequent searching.

• Each INSERT, UPDATE, or DELETE operation triggers updates to the corresponding tables, which may impact performance,
especially with large tables. Ensure that insert operations are not intensive and remain within the SLA.

• Full-text search can be resource-intensive, potentially affecting database performance. Indexing large amounts of text data
can increase the database size, so it’s recommended to limit the number of columns included to only those necessary for
the search functionality.

More about the FTS MATCH command: https://www.sqlite.org/fts5.html

Full-Text Search (FTS)

Fabric utilizes the SQLite FTS5 extension module to enable full table search capabilities within an LU table.

The most common use case for FTS tables is wildcard or prefix searches, where queries using the LIKE
operator are insufficient (e.g., for fuzzy search).

When the full-text search property is set to TRUE, a virtual table is created along with five additional
tables. These tables store all necessary data, tokens, and indexes required to perform a full-text search.

https://www.sqlite.org/fts5.html

MDB JMX Stats
Fabric arrives tightly pre-integrated with JMX (Java Management eXtensions) -

technology to enable comprehensive and low-resolution monitoring and management

of applications.

Note:

1. JMX stats are per Fabric node (and not per cluster)

2. JMX stats are restarted once Fabric node is restarted

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

JMX Stats in Grafana

JMX Stats in Grafana

MDB JMX Stats

GET

1. getDuration – total duration (and count) of GET performed

MDB Save

1. mdbSaveErrors - duration and count of mdb saved to storage, resulting in an
exception, per schema.

2. mdbSaveDuration - duration and count of mdb saved to storage, per schema.

3. mdbSaveBytes - Bytes (uncompressed) and count of mdb saved to storage, per
schema.

MDB Fetch

1. MdbFetchDuration - Duration and count of mdb read from storage, per schema.

2. mdbFetchNolnstance Duration and count of mdb fetch from storage, where no
instance was available, per schema.

3. mdbFetchErrors Duration and count of mdb fetch from storage, resulting in
exception, per schema.

4. mdbFetchBytes Bytes (uncompressed) and count of mdb read from storage, per
schema.

MDB Attach

1. mdbAttachError Duration and count of mdb attach that resulted in an error, per
schema.

2. mdbAttachDuration Duration and count of successful mdb attach, per schema.

MDB JMX Stats

Populations – duration + count for each population

Under transaction >> populationSync

MDB JMX Stats

MDB Cache
1. mdbCacheCount Count of LUI micro databases cached (not in use), per schema.

2. mdbFetchNoNewVersion Duration and count of mdb fetch from storage, where the
cache was up to date, per schema (fetched from cache).

3. mdbCacheBytes Bytes of LUI micro databases cached (not in use), per schema.

Statements
1. mdbActivePreparedStatements The number of active prepared statements,

including the ones in the prepared statement cache.
(MDB_PREPARED_STATEMENT_CACHE_LIMIT pool).

2. mdbActiveStatements The number of active statements (non-prepared).

3. mdbActiveResultSets The number of active result sets.

Fabric Pool
1. mdbSessionFromPoolDuration Time spent successfully waiting for a session from

the mdb session pool (MDB_CONTEXT_POOL_SIZE pool).

Lock
1. mdbWriteLockDuration Time spent in write locking the mdb.

Time spent on waiting to lock mdb file for write (until previous lock is released)

Vacuum
1. mdbVacuumReclaim Number of bytes reclaimed by the vacuum operations.

2. mdbVacuumDuration Duration of vacuum done on mdb above thresholds.

3. mdbVacuumErrors Number of errors in mdb Vacuum.

	Introduction
	Slide 1: Non-source Schema tables & MDB JMX Stats
	Slide 2: Agenda
	Slide 3: Business tables
	Slide 4: Business tables
	Slide 5: LU Built-in Tables
	Slide 6: LU Built-in Tables
	Slide 7: LU Built-in Tables
	Slide 8: LU Built-in Tables
	Slide 9: Table Properties
	Slide 10: Table Properties
	Slide 11: Table Properties
	Slide 12: MDB JMX Stats
	Slide 13: JMX Stats in Grafana
	Slide 14: JMX Stats in Grafana
	Slide 15: MDB JMX Stats
	Slide 16: MDB JMX Stats
	Slide 17: MDB JMX Stats

